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Abstract
In an atomic splittable flow over time game, finitely many players route flow dynamically through
a network, in which edges are equipped with transit times, specifying the traversing time, and
with capacities, restricting flow rates. Infinitesimally small flow particles controlled by the same
player arrive at a constant rate at the player’s origin and the player’s goal is to maximize the
flow volume that arrives at the player’s destination within a given time horizon. Here, the flow
dynamics are described by the deterministic queuing model, i.e., flow of different players merges
perfectly, but excessive flow has to wait in a queue in front of the bottle-neck. In order to determine
Nash equilibria in such games, the main challenge is to consider suitable definitions for the players’
strategies, which depend on the level of information the players receive throughout the game. For
the most restricted version, in which the players receive no information on the network state at all,
we can show that there is no Nash equilibrium in general, not even for networks with only two edges.
However, if the current edge congestions are provided over time, the players can adapt their route
choices dynamically. We show that a profile of those strategies always lead to a unique feasible flow
over time. Hence, those atomic splittable flow over time games are well-defined. For parallel-edge
networks Nash equilibria exists and the total flow arriving in time equals the value of a maximum
flow over time leading to a price of anarchy of 1.
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1 Introduction

In static routing problems, traffic is to be routed through a network at minimum total cost.
The cost or traveling time on each edge depends on its congestion. However, the assumption
that an optimal routing might be implemented by some superordinate authority is not
realistic in many settings. More likely, each network participant selfishly chooses a path in
order to minimize their own traveling time. In general, the lack of coordination causes a
higher total traveling time. To quantify this decrease in performance, the total traveling
time of a Wardrop equilibrium [45] is compared to the total traveling time of the system
optimum. The ratio between a worst equilibrium and the system optimum is the price of
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2 Atomic Splittable Flow Over Time Games

anarchy [38]. This basic model can be extended in several ways. In this research work we
want to focus on two aspects.

The first aspect is the temporal dimension. Vehicles in real traffic need time to move from
the origin to the destination and the traveling time increases with the degree of congestion,
which varies over time. In other words, the traffic flow does not traverse the network
instantaneously, but progresses at a certain pace. In addition, the effects of a routing
decision in one part of the network take some time to spread across the network as a whole.
In order to mathematically model this, we add a time component, transforming static flows
into flows over time. Here, every infinitesimally small flow particle needs time to traverse
the network and the flow rates of the edges are restricted by capacities. By assuming that
each particle acts selfishly, we can consider dynamic equilibria, which are called Nash flows
over time [29].

For the second aspect, note that in real-world traffic the activity of a single road user has
in most cases a negligible impact on the performance of the system as a whole. Furthermore,
the assumption of independent and selfish particles is not justifiable in all applications: Net-
works where participants control a flow of positive measure are not covered. For instance, in
transportation networks freight units might not act selfishly; they are controlled by freight
companies that each control a significant amount of traffic. This leads to the second as-
pect, cooperative behavior among groups of network participants. To integrate this into
the mathematical model, flow particles are allowed to form coalitions. In so-called atomic
splittable routing games we consider a finite number of atomic players (the coalitions), each
controlling a positive amount of flow volume that has to be routed through the network but
can be split up and divided over different routes.

In this paper we want to combine both aspects, as depicted in Figure 1. That means, in
contrast to Nash flows over time, sets of particles form coalitions which will be represented
by superordinate players. In contrast to atomic splittable routing games, flow is modeled by
a flow over time and players’ decisions might be adapted to new situations. This extension
covers a greater variety of scenarios. For example, road traffic models in which most drivers
are guided by navigation systems (e.g. Google Maps, TomTom, Here, Garmin) can be
modeled by covering the strategic behavior of the firms: The decisions of a single driver do
not have a big impact on the city’s traffic, but Google Maps decisions do; and TomTom
might actually want to react. The situation will even intensify in the future with the rise
of autonomous driving, as the decision making process is shifted to the navigation systems.
We would like to point out that – in contrast to previous models – the interests of navigation
companies and the general public are assumably in line: The cooperation of the users of a
navigation system could reduce the average driving time per company on the one hand and
the driving time in general on the other hand. This would lead to lower energy consumption,
and therefore, lower emissions of polluting substances.

It turned out to be surprisingly challenging to consider equilibria in atomic splittable
flow over time games. For this reason the overall goal is to define a solid model on these
dynamic games and to present some preliminary observations, as well as some non-trivial
first results, which serve as a basis for further research.

Related work. Static network flows have been studied for quite a while. A lot of pioneer
work is due to Ford and Fulkerson, who also were the first to introduce flows over time [15,
16]. They provided an efficient algorithm for a maximum flow over time, which sends the
maximal flow volume from a source to a sink given a finite time horizon. Closely related, a
quickest flow minimizes the arrival time of the latest particle for a given flow volume. This
can be achieved by combining the algorithm of Ford and Fulkerson with a binary search



A. Adamik and L. Sering 3

static dynamic

nonatomic

atomic

Wardrop equilibria in
static routing games Nash flows over time

atomic splittable
routing games

atomic splittable
flow over time games

add coop-
eration

add tem-
poral

dimension

add tem-
poral

dimension

add coop-
eration

Figure 1 Relationship between equilibrium situations in static routing games and atomic split-
table flow over time games.

framework [6, 14]. For single-source and single-sink networks it is furthermore possible to
construct a flow over time that is maximal for all time horizons (and quickest for all flow
volumes) simultaneously. The existence of these so-called earliest arrival flows was shown
by Gale in 1959 [17]. They can be computed algorithmically by using the successive shortest
path algorithm in the residual networks [31]. For more details and further references to
literature on optimization problems in the flow over time setting, we refer to the survey of
Skutella [43].

Koch and Skutella [29] approach flows over time from a game theoretic perspective by
introducing Nash flows over time. In their model, every infinitesimally small flow particle is
considered to be a player aiming to reach the common destination as early as possible. As
the flow rate entering an edge could exceed its capacity, they considered the deterministic
queuing model [44], which causes the excess flow to wait in a queue in front of the bottle-
neck. Existence of these dynamic equilibria were shown by Cominetti et al. [8]. Several other
aspects, including uniqueness, continuity, long term behavior, multi-terminals, spillback and
price of anarchy, were studied in recent years [3, 9, 10, 12, 27, 32, 34, 40, 41]; see [39] for
an overview. A slightly different approach for user equilibria was presented by Graf et
al. [18, 19, 20]. They use the same flow over time model, except that particles do not
anticipate the future evolution of the flow, but instead choose quickest routes according to
current waiting times. As these delays may be subject to change, each particle can adapt
its route choice along the way.

Atomic splittable congestion games for static network flows can be described as Wardrop
equilibria [45] with coalitions [25, 30]; see also the survey of Correa and Stier-Moses [13].
For these games, Nash equilibria always exist, which can be shown by standard fixed point
techniques [35]. Altman et al. [1] showed that equilibria are unique if the delay functions
are polynomials of degree less than 3. Regarding more general delay functions, Bhaskar et
al. [4] showed that for two players a unique equilibrium exists if, and only if, the network
is a generalized series-parallel graph. Harks and Timmermans [24] showed uniqueness of
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equilibria when the players’ strategy space has a bidirectional flow polymatroid structure.
Roughgarden [36] showed that the inefficiency of a system decreases with an increasing
degree of cooperation. He showed that the price of anarchy for classes of traveling time func-
tions in the atomic case is bounded by the price of anarchy for the same class of functions
in the nonatomic case. Further research on the price of anarchy in static atomic splittable
games is due to Cominetti et al. [11], Harks [21], and Roughgarden and Schoppmann [37].
Computational-wise Cominetti et al. [11] showed that equilibria can be computed efficiently
when the cost functions are affine and player-independent. Regarding player-specific affine
costs, Harks and Timmermans [23] described a polynomial algorithm for parallel-edge net-
works, and Bhaskar and Lolakapuri [5] presented an exponential algorithm for general convex
functions. Very recently, Klimm and Warode showed that the computation with player-
specific affine costs is PPAD-complete for general networks [28].

We should also mention that the combination of cooperation and temporal dimension
has been considered for discrete packet routing games; see Peis et al. [33]. Here, each player
controls a finite amount of packets, which has to be routed through a network in discrete
time steps. For more results on competitive packet routing models we refer to Hoefer et
al. [26] (continuous-time packets model) and Harks et al. [22] (discrete-time packet model).

Contribution and overview. In Section 2, we introduce all notations and formally
describe atomic splittable flow over time games for general networks. The players’ strategies
determine how much flow they assign to each edge for every point in time during the game
depending on available information on the current state. We consider two very natural sets
of information. The first consists solely of the current time. In Section 3 we show that this
setting does not allow for a Nash equilibrium in general, not even in a network with only
two parallel edges. This motivates to consider more complex information models. Hence,
Section 4 is dedicated to the second set of information which additionally comprises the
current congestion of the edges in form of the exit times. As the first main result we show
that every strategy profile results in a unique feasible flow over time by formulating the
conditions as initial value problem and applying the Picard-Lindelöf theorem. For parallel-
edge networks we show that Nash equilibria always exist by explicitly stating a strategy
profile. Furthermore, we prove for that setting that all Nash equilibria have the same
objective equal to the system optimum (i.e., the value of a maximum flow over time) implying
that the price of anarchy for those networks is 1. Finally, we suggest further areas of research
in Section 5.

2 Atomic Splittable Flow Over Time Games

In this section, we are going to properly define atomic splittable flow over time games.
The two main aspects are the multi-commodity flow dynamics (see [40]) and the players’
strategies, which depend on the information received over time.

Game setting. A network consists of a directed graph G = (V,E), where every edge e ∈ E
is equipped with a transit time τe > 0 and a capacity νe > 0. For a node v ∈ V we denote
the set of all incoming edges by δ−v and the set of outgoing edges by δ+

v .
For an atomic splittable flow over time game we consider a finite set of players P , each

with an origin-destination pair sj-tj and a supply rate dj > 0, as well as a time horizonH > 0.
We assume that sj can reach tj within the network.

The flow of player j enters the network via node sj at a rate of dj from time 0 onwards.
The goal is to maximize the cumulative flow volume reaching node tj before the end of the
game at time H.
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u v
∑
j∈P f

+
e,j(θ)

∑
j∈P f

−
e,j(θ)

ze(θ) νe
τe

Figure 2 Representation of an edge in the deterministic queuing model: If more flow particles
enter edge e = uv within the total inflow rate

∑
j∈P

f+
e,j(θ) than its capacity νe allows to process,

they build up a queue, whose current length is given by ze(θ). Whenever the queue is non-empty
at time θ the total outflow rate

∑
j∈P

f−e,j(θ + τe) at time θ + τe equals the capacity νe.

Flow dynamics. In the deterministic queuing model the total inflow rate into an edge is
bounded by the capacity. If the capacity is exceeded, a queue builds up in which all entering
particles have to wait in line. Afterwards each particle needs τe time to traverse the edge
before it can enter the next edge along the path; see Figure 2. The dynamics of this process
are formally defined as follows:

A flow over time is described by a family of Lebesgue-integrable functions f = (f+, f−) =
(f+
e,j , f

−
e,j)e∈E,j∈P , where f

+
e,j , f

−
e,j : [0, H) → R≥0 denote the rate at which flow controlled

by player j enters and leaves edge e. The flow rates summed over all players
∑
j∈P f

+
e,j(θ)

and
∑
j∈P f

−
e,j(θ) are called total in- and outflow rates. The cumulative in- and outflows,

i.e., the amount of player j’s flow that has entered or left an edge e up to time θ, is denoted
by F+

e,j(θ) =
∫ θ

0 f
+
e,j(ϑ) dϑ and F−e,j(θ) =

∫ θ
0 f
−
e,j(ϑ) dϑ. Finally, f+, f−, F+ and F− denote

the vectors of (cumulative) in- and outflows with one entry per edge-player-pair.
Such a family of functions f is a flow over time if the following two conditions hold for

all e ∈ E and j ∈ P :
Flow conservation is fulfilled for all θ ∈ [0, H):

∑
e∈δ+

v

f+
e,j(θ)−

∑
e∈δ−v

f−e,j(θ) =
{
dj for v = sj ,

0 for v ∈ V \ { sj , tj } .
(1)

Non-deficit constraints are satisfied for all θ ∈ [0, H − τe):

F+
e,j(θ)− F

−
e,j(θ + τe) ≥ 0. (2)

To track the net flow that is not yet processed and remains in the queue, we introduce
ze(θ) to denote the queue length at time θ. Formally, it is defined as ze(θ) =

∑
j∈P F

+
e,j(θ)−∑

j∈P F
−
e,j(θ + τe) for e ∈ E. For a feasible flow over time we require that, whenever flow is

waiting in the queue, the edge operates at capacity rate. In other words, for all θ ∈ [0, H−τe)
and e ∈ E, we require

∑
j∈P

f−e,j(θ + τe) =
{
νe if ze(θ) > 0,
min {

∑
j∈P f

+
e,j(θ), νe } else.

(3)

The waiting time qe(θ) experienced by a particle entering edge e at time θ is generally
defined as the time needed to process the flow present in the queue when the particle enters
it. In other words, it is the time span between its entrance to and its exit from the queue
just before traversing the edge. That is

qe(θ) := min

 q ≥ 0

∣∣∣∣∣∣
∫ θ+q

θ

∑
j∈P

f−e,j(ϑ+ τe) dϑ = ze(θ)

 = ze(θ)
νe

.
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The exit time Te(θ) of a particle entering an edge e ∈ E at time θ is given by the sum of
the entrance time θ, its waiting time in the queue qe(θ) and the transit time τe. Hence, we
have

Te(θ) := θ + ze(θ)
νe

+ τe.

Since ze can at most decrease at rate νe, it follows that q′e(θ) ≥ −1 and T ′e(θ) ≥ 0, which
induces that Te is non-decreasing. Note that these derivatives exist for almost all θ due to
Lebesgue’s differentiation theorem.

Finally, in a feasible flow over time, the flow of different players should merge seamlessly.
This means that, at any point in time, a player’s share of the total outflow rate is equal to
her share of the total inflow rate back at the time when the flow entered the edge. More
precisely, we require

f−e,j(θ) =


f+

e,j
(φ)∑

j′∈P
f+

e,j′
(φ)
·
∑
j′∈P f

−
e,j′(θ) if

∑
j′∈P f

+
e,j′(φ) > 0,

0 else,
(4)

for all θ ∈ [0, H) and φ := max T−1
e (θ). Here, we set f+

e,j′(φ) := 0 for φ < 0. Note that
φ denotes the edge-entrance times of all particles leaving the edge at time θ. Taking the
maximum of T−1

e (θ) simply ensures well-definedness which is required since Te might not
be strictly increasing.

To conclude we denote the set of all feasible flows over time by F , i.e., all f = (f+, f−)
that satisfy (1), (2), (3) and (4). As the outflow rates are uniquely defined by the inflow
rates, we refer to a feasible flow over time only by the corresponding inflow f+, and write
f+ ∈ F .

Atomic splittable flow over time games. Let ρj : F → R be the function indicating
player j’s payoff for a given f ∈ F , which is to be maximized. In general, ρ can be set to
various objective functions (e.g. arrival time of the player’s latest particle or the average
arrival time), but in this paper we will focus on the maximum flow over time problem. Each
player wants to maximize her amount of flow routed from sj to tj before the end of the
game at time H:

ρj(f) =
∑
e∈δ−tj

F−e,j(H)−
∑
e∈δ+

tj

F+
e,j(H).

We choose this maximum flow objective as it seems to be the most straight-forward payoff-
function. It is conceivable though, that most results might transfer to quickest flow payoff-
functions via a binary-search framework (cf. in non-competitive settings quickest flows are
constructed from maximum flows over time via binary-search). But we leave this for future
research.

The strategy space is a player’s set of viable options in order to maximize her payoff. A
single strategy is a complete instruction determining the player’s inflow rates of all times
and for all situations possibly occurring. Formally, the strategy space of player j is a set of
functions

Σj =
{
gj : I → [0, 1]E

∣∣∣∣∣ ge,j is Lebesgue-integrable for all e ∈ E and∑
e∈δ+

v
ge,j(I) = 1 for all I ∈ I, v ∈ V \ { tj }

}
,

where I is the set of information available to the players. This set is not well-defined yet,
but we will discuss this extensively, and in the end, we will consider two separate definitions
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for I, one in Section 3 and one in Section 4. Informally, the set of information is used to
delineate what defines a situation and how it is perceived by the players. The interpretation
is as follows. For every information I ∈ I, the value ge,j(I) determines which proportion
of player j’s flow arriving at v is distributed onto the outgoing edges e ∈ δ+

v . We use
proportions that sum up to 1 instead of the inflow rates, as this easily ensures that flow
conservation is fulfilled at all times. Note that the received information I can depend on the
current time θ and on the flow over time f itself. As we normally do not want the players
to see the future, it should only depend on the flow over time up to time θ. In general it
might be player dependent, hence, we write Ij(θ, f).

In order to turn a strategy profile g = (gj)j∈P ∈×j∈P Σj into a feasible flow over time
f , we consider the following system of equations that has to be satisfied for all θ ∈ [0, H):

f+
e,j(θ) = ge,j(Ij(θ, f)) ·

( ∑
e′∈δ−sj

f−e′,j(θ) + dj

)
for j ∈ P, e ∈ δ+

sj
,

f+
e,j(θ) = ge,j(Ij(θ, f)) ·

∑
e′∈δ−u

f−e′,j(θ) for j ∈ P, e = uv ∈ E \ (δ+
sj
∪ δ+

tj ),

f+
e,j(θ) = 0 for j ∈ P, e ∈ δ+

tj .

(5)

Note that in order to keep it as simple as possible, we assume that flow of player j reaching
tj leaves the network immediately, hence, f+

e,j(θ) = 0 for all e ∈ δ+
tj . This leads to a simpler

payoff for all players j of ρj(f) =
∑
e∈δ−tj

F−e,j(H).

Since the inflow rates f+(θ) might depend on the flow over time itself up to time θ, it is
not guaranteed that this system of equations yields a feasible flow over time as solution.

To illustrate this issue assume for example a game with a single player in a network with
two parallel edges e1 and e2 where e1 has a tiny capacity. If the player’s strategy is to send
everything into e1 as long as there is no waiting time on e1, and otherwise send everything
into e2, this would not result in a feasible flow over time. To see this, suppose that the inflow
into e1 would be positive on a measurable set, which would immediately cause a positive
waiting time on e1. Hence, the strategy says that no flow is sent into e1. On the other
hand, if no flow is sent into e1 at all there would not be any waiting time, leading again to
a contradiction.

For that reason, the key challenge is to find a reasonable set of information I and strategy
spaces Σj , such that, on the one hand, there exists a unique (up to a null set) feasible flow
over time satisfying (5) for every given strategy profile g, and on the other hand, a Nash
equilibrium exists. Note that we only consider pure Nash equilibria.

In the following two sections we discuss two very natural sets of information.

3 Temporal Information Only

First, we want to examine the simplest set of information, namely the current point in time
only: We set Ij(θ, f) := θ for all players j ∈ P . That means the players do not receive any
information about the current state of the flow, but instead have to decide at the beginning
of the game along which routes their flow particles are routed. In this case it is guaranteed
that there exists a unique feasible flow over time that satisfies (5), as we can simply set
f+
e,j(θ) to the right sides of (5) (formally this also follows from Theorem 2). However, Nash
equilibria do not exist in general, which is already true for very simple networks.
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d1 = 4
d2 = 4

ν1 = 2

ν2 = 2
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τ1 = 1
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H = 21
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(a) A parallel network with two identical edges and two identical players.

θ

f+(θ)

p2

p1

p1

p2

e2

e1

r2

r1 H
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(b) Step 1: p1 mirrors p2’s strategy. We have r1 =
r2 = 10 and both queues build up from θ = 0
onward. W.l.o.g., we have f+

1,2(θ) ≤ d2 = 4 for
θ ∈ [10− ε, 10).

θ

f̂+(θ)

p2

p1

p1

p2

e2

e1

r̂1

r̂2

H

5 10 15 20

(c) Step 2: p1 shifts δ flow units from e1 to e2
causing r̂1 > 10 and r̂2 < 10. By pumping at
maximum rate into e1 after r̂2 her payoff is ρ̂1 >
40 = OPT /2.

Figure 3 Construction of a response strategy that always yields strictly more than half of the
total optimum in a network of two parallel edges. Here, ri and r̂i denote the time when the last
particles arriving at t just in time, enter ei.

I Theorem 1. With temporal information only, there exists no Nash equilibrium in an
atomic splittable flow over time game of two players p1 and p2 with identical supply rates
d1, d2 > 0, on a network with two identical parallel edges e1, e2 from s ( = sp1 = sp2) to t (
= tp1 = tp2) with νe1 =νe2 < d1 =d2 and τe1 =τe2 < H.

The key proof idea is the following. To every strategy of the competitor, a player can
choose a response strategy that yields a payoff of strictly more than half the total optimum,
i.e., the flow value of a maximum flow over time with inflow rate d1+d2. This can be achieved
by first mirroring the competitor’s strategy (copying the strategy but interchanging the roles
of e1 and e2) and then shifting some flow in the beginning of the game. This shift changes
the points in time ri when the last particles arriving at t just in time, enter edge ei for
i = 1, 2. As the new values r̂1 and r̂2 are not equal anymore the responding player can
modify the inflow rates between r̂1 and r̂2 in order to squeeze in a little more flow than the
competitor, which will then be a little more than OPT /2.

As in turn the competitor can again choose a strategy with a payoff of more than half
the optimum, this immediately implies that a Nash equilibrium cannot exist. This idea for
the network given in Figure 3a is visualized in Figures 3b and 3c.

Proof of Theorem 1. For the sake of simplicity we replace indexes ei by i and pj by j. E.g.
f1,2 denotes the inflow rate function of p2 into e1. Furthermore, r1 and r2 denote the points
in time when the last particles arriving at t before H enter e1 and e2, respectively. We will
use a hat to denote parameters that have altered with the change in strategy. For example,
ρ will denote the initial and ρ̂ the new payoff. The optimal value of a maximum flow is
OPT = ν1 · (H − τ1) + ν2 · (H − τ2). We show that to every strategy of player p2, player p1
can choose a response strategy that yields a payoff of strictly more than half the optimum.
As in turn p2 can again choose a strategy with a payoff of more than half the optimum,
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this immediately implies that a Nash equilibrium cannot exist. To achieve this, player p1
mirrors p2’s strategy. By this we mean that p1 has the same strategy as p2, but the roles of
the edges are interchanged. Figure 3b illustrates this behavior.

f+
1,1(θ) = f+

2,2(θ) and f+
2,1(θ) = f+

1,2(θ) for θ ∈ [0, H).

Both total inflow rates into the edges are equal and exceed the capacities, i.e., f+
1,1(θ) +

f+
1,2(θ) = f+

2,1(θ) + f+
2,2(θ) > ν1 = ν2 for θ ∈ [0, H). It is easy to see that both payoffs are

OPT /2. As capacities are exceeded, queues build up from the very beginning. At time
r1 = r2 = OPT /(d1 + d2) the last particles that will reach t in time enter the network. The
response strategy of p1 now consists of reallocating a little flow to benefit from deferred r̂1
and r̂2: W.l.o.g. let p2 send not more than half of her supply rate d2 at any time in [r1−ε, r1)
for ε > 0, into e1. That means player p1 sends not less than half of d1 into e1. (If no such
ε exists, due to some crazy function behavior, one can consider averages instead.) Player
p1 reallocates some δ > 0 flow units from e1 to e2. By doing so, r̂2 is shifted to r2 − δ

ν2
.

Meanwhile we want that δ
ν2
≤ ε, that the δ flow units are taken before time r2 − ε and that

the queue of e1 is never empty for θ > 0. Since there has to exist p1-flow of positive measure
up to time r1 on e1 (in case the only flow p1 sends into e1 is within [r1−ε, r1) we can choose
a smaller ε), we can clearly set δ small enough to fulfill these conditions. As a result, r̂1
is postponed, i.e., r̂1 > r̂2. Conclusively, every flow sent until time r̂2 reaches t before H.
Hence, the payoffs of both players belonging to [0, r̂2) are equal. After time r̂2, player p1
can pump all her flow into e1, since it is still eligible to reach t before H. See Figure 3c for
an illustration. Therefore,

f̂+
1,1(θ) := d1

{
> d2/2 ≥ f+

1,2(θ) θ ∈ [r̂2, r1)
≥ f+

1,2(θ) θ ≥ r1.

Hence, p1’s inflow rate into e1 is strictly greater than p2’s during a time period of positive
measure, which shows that the payoff of p1 is strictly larger than that of p2. As the sum of
the payoffs equals OPT we have that ρ̂1 > OPT /2. J

4 Information on Exit Times

The absence of a Nash equilibrium for temporal information only was mainly due to the
theoretical information advantage of the deviating player. Player p1 can respond to p2’s
strategy, while p2 does not see p1’s moves and is unable to react. As it is very natural to
require inter-player reactions over time, we extend the information by the current congestion
of the edges in form of the exit times T (θ) := (Te(θ))e∈E . Formally, we define

Ij(θ, f) := (θ, T (θ)) ∈ I := [0, H)× RE≥0 for all j ∈ P.

The reason for choosing exit times over waiting times or queue sizes, which both contain the
same information about the congestion in the networks as the exit times, is that the exit
times are non-decreasing. As the exit time Te(θ) = θ+τe+ 1

νe

∑
j∈P

(
F+
e,j(θ)− F

−
e,j(θ + τe)

)
depends directly on the cumulative flows the equations system (5) becomes a system of
differential equations. In order to show existence and uniqueness we use the Picard-Lindelöf
theorem. For this reason, we require the strategies to be locally Lipschitz-continuous from
the right in order to ensure uniqueness. More formally, we say a strategy ge,j is right-
Lipschitz if for every I ∈ I there exists an L > 0 such that there exists an ε > 0 with
|ge,j(I)− ge,j(I + x)| ≤ L · ‖x‖ for all x ∈ [0, ε]× [0, ε]E .
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Existence and uniqueness. First we show, that in this setting every right-Lipschitz
strategy profile yields a unique feasible flow over time.

I Theorem 2. For all right-Lipschitz strategy profiles g = (gj)j∈P of an atomic splittable
flow over time game with information on exit times, there exists a unique feasible flow over
time f+ satisfying (5).

Proof. We will construct the feasible flow over time satisfying (5) step by step starting with
the empty flow over time f+ ≡ 0 up to time 0. We define a restricted flow over time on
the interval [0, a) to be a vector of Lebesgue-integrable functions (f+

e,j)e∈E,j∈P , such that all
flow conditions hold for all times in [0, a).

Suppose we are given a unique restricted feasible flow over time satisfying (5) on the
interval [0, a) for some a ∈ [0, H]. If a = H, we are done. It is possible to determine the
queue lengths z(a) = (ze(a))e∈E , the waiting times q(a) = (qe(a))e∈E and the exit times
T (a) = (Te(a))e∈E based on f+|[0,a). Hence, we can also evaluate g(a, T (a)). In order to
further extend the flow over time, we specify an interval [a, b) ⊆ [0, H). The right endpoint
b > a has to be small enough to ensure that ge,j(θ, T (θ)) is Lipschitz-continuous for θ ∈ [a, b)
and for all e ∈ E and j ∈ P . We can find such b as all ge,j are right-Lipschitz, the exit time
functions Te are non-decreasing and continuous in θ.

We obtain the following initial value problem:

f+
e,j(a) = ge,j(a, T (a)) · Cu(a),

f+
e,j(θ) = ge,j(θ,

(
θ + τe′ + 1

νe′

∑
j′∈P

F+
e′,j′(θ)− F

−
e′,j′(θ + τe′)

)
e′∈E) · Cu(θ),

for all j ∈ P and e = uv ∈ E. Here, Cu(θ) ≥ 0 is the total inflow rate into node u except for
t where it is 0 (as stated in (5)). Since the transit times are strictly positive Cu : [a, b)→ R is
completely determined by the restricted feasible flow over time on [0, a) as long as b−a < τe.
In addition, Cu is right-Lipschitz, therefore, we can choose b small enough, such that Cu is
Lipschitz-continuous on [a, b). Furthermore, if qe(θ) > 0 we have that F−e′,j′(θ + τe′) is also
determined from the past as long as b− a < qe(θ) or in the case of qe(θ) = 0, we have that
F−e′,j′(θ + τe′) =

∑
j′∈P F

+
e′,j′(θ) as required by (2).

Since the exit times T depend Lipschitz-continuous on F+, also the right-side depends
Lipschitz-continuous on F+. Hence, the Picard-Lindelöf theorem guarantees the existence
of a unique solution. It is easy to see, that extending f by this solution yields a restricted
feasible flow over time on [0, b). Flow conservation is fulfilled as

∑
e∈δ+

v
ge,j(θ, T (θ)) = 1 and

(2), (3) and (4) are satisfied as we implicitly define the outflow rates accordingly.
It remains to show that it is possible to repeat the process until we cover the whole

interval [0, H). Let bi, i = 1, 2, 3, . . . , be the right endpoints during this extension process.
The sequence might converge to lim

i→∞
bi = b∞ < H. Existence and uniqueness are thus

provided on [0, b∞). But this means, we can apply the extension process for a = b∞. As we
can always continue this process from a limit point, we can apply this transfinite induction
to obtain a unique feasible flow over time on [0, H). J

This theorem shows that we obtain a well-defined atomic splittable flow over time game
as long as we only consider strategies that are not too wild. It is worth noting that right-
Lipschitz functions can have infinitely many jumps and that we cannot hope for much more
general strategy-functions as argued in the following. Suppose we allow for strategies that
are not continuous from the right. We end up with the following problem: Consider a game
with only one player p1 and a network consisting of two edges e1, e2 both from sp1 to tp1
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and with νe1 < dp1 . The strategy with ge1,p1(θ, T (θ)) = 1 if Te1(θ) ≤ θ+τe1 and 0 otherwise,
means, that if there is no queue on e1 the players sends all its flow into e1 (which causes
a queue to build up) but if there is a positive queue she sends nothing (which causes any
positive queue to decrease). This strategy is not right-continuous in T as ge1,1 switches from
1 to 0 as soon as T > τe1 + θ, and clearly, it cannot lead to a feasible flow over time.

Existence of Nash equilibria in parallel-edge networks. Unfortunately, the task to
show the existence of a Nash equilibrium in this setting turns out to be quite challenging.
For this reason we only show the existence of Nash equilibria for simple networks: For the
remaining of this section we consider parallel-edge networks with two nodes s = sj and
t = tj , j ∈ P . We obtain

Σj =
{
gj : I → [0, dj ]E

∣∣∣∣ ge,j is right-Lipschitz for all e ∈ E
and

∑
e∈E ge,j(I) = 1 for all I ∈ I

}
.

This leads to an “over time” version of atomic splittable singleton games as they were
studied in by Harks and Timmermans [23]. As an additional motivation, it is worth noting,
that these restricted networks, become more meaningful if, instead of a routing game, we
consider a throughput-scheduling problem [42]. Suppose the edges represent machines on
which competing players want to maximize their throughput. The jobs can run in parallel
on multiple machines up to some maximum rate of dj and each machine has a maximal
service rate of νe and individual time horizons H − τe. A very similar model without the
game-theoretical aspect is for example studied by Armony and Bambos [2].

In order to obtain a Nash equilibrium, it is worth noting that players do not care on
which edge their flow is sent, as long as it arrives at the destination before H. To model a
suitable strategy, we introduce the set of active edges E′(T ) := { e ∈ E | Te < H } on which
flow still arrives at t before H, depending on the exit times. The resulting strategy for a
player j ∈ P on edge e ∈ E could look as follows:

ge,j(θ, T ) :=



νe∑
e′∈E′(T )

νe′
if e ∈ E′(T ),

0 if E′(T ) 6= ∅ and e /∈ E′(T ),

νe∑
e′∈E

νe′
if E′(T ) = ∅.

(6)

The third case is not of importance for the player, as none of the flow sent into the network
will arrive in time anymore. As E′(T ) stays constant for small increases of T , the same is
true for ge,j . Since

∑
e∈E ge,j(θ, T ) = 1, we have gj ∈ Σj .

We will show that this strategy profile leads to a Nash equilibrium. For this we first show
in Lemma 3 that the given strategy profile leads to a total payoff equal to the system optimum
OPT (the value of a maximum flow over time with inflow rate

∑
j∈P dj). Afterwards, we

determine in Lemma 4 that the payoff for each player given the strategy profile in (6) is a
fixed share of the total payoff. Finally, we argue that none of the players has an incentive
to deviate from the given strategy profile, since shares cannot be increased.

For the remaining of this section, let re be the point in time when the (first) particle
that arrives at t at time H enters edge e. Formally, re := minT−1

e (H). Hence, Te(θ) < H

for any θ < re and Te(θ) ≥ H for any θ ≥ re.

I Lemma 3. For the strategy profile given in (6) the sum of the payoffs of all players equals
the system optimum OPT.
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Proof. To prove this, we allow the network to have transit times that equal 0. We split the
set of instances into three cases

Case 1:
∑
j∈P dj ≥

∑
e∈E νe.

W.l.o.g. we assume τe < H; otherwise the edge would be superfluous and could be deleted.
We have OPT =

∑
e∈E νe · (H − τe) as shown in [43]. Since all players route their flow

proportionally to the capacities of the active edges, we have∑
j∈P

f+
e,j(θ) = νe∑

e′∈E′(T (θ)) νe′
·
∑
j∈P

dj ≥ νe for all θ with Te(θ) < H.

With this at hand, we can state the total outflow during the whole game:

∑
j∈P

ρj =
∑
e∈E

∑
j∈P

F−e,j(H) =
∑
e∈E

∫ H

0

∑
j∈P

f−e,j(θ) dθ

=
∑
e∈E

(∫ τe

0
0 dθ +

∫ H

τe

νe dθ
)

=
∑
e∈E

(H − τe) · νe = OPT .

Case 2:
∑
j∈P dj <

∑
e∈E νe and τe = 0 for all e ∈ E.

We can easily see that OPT = H ·
∑
j∈P dj and∑

j∈J
f+
e,j(θ) = νe∑

e′∈E νe′
·
∑
j∈P

dj < νe for all θ < H.

Since no queues build up, all edges stay active for all θ ∈ [0, H). Therefore, it holds that

∑
j∈P

ρj =
∑
e∈E

∫ H

0

∑
j∈P

f−e,j(θ) dθ =
∑
e∈E

∑
j∈P

H ·dj ·
νe∑

e′∈E νe′
= H ·

∑
j∈P

dj = OPT .

Case 3.
∑
j∈P dj <

∑
e∈E νe and there exists an e ∈ E with τe > 0.

We assume that τe < H for all e ∈ E. Let e∗ be the first edge to drop out of E′(T (θ)),
i.e., re∗ is minimal among all re. As in the first phase no queues build up (see Case 2), we
have re∗ = H − τe∗ , which means that τe∗ is maximal among all τe. Emphasis should be
put on the fact that the whole flow sent into the network up to time re∗ arrives at t in time;
a volume of

∑
j∈P dj · (H − τe∗) in total. Hence, the system optimum cannot perform any

better until re∗ . To show that after time re∗ , the summed payoffs correspond to the system
optimum as well, we reduce the remaining instance. First, we remove e∗ from the set of
edges, i.e., Ê = E \ { e∗ }. Second, we shift the time axis re∗ time units back. By that we
mean that the new time 0 corresponds to re∗ in the former instance and Ĥ = H − re∗ = τe∗ .
Everything else remains untouched, in particular all queues are empty at re∗ . This instance
is strictly smaller, which means that eventually the reduction process must end because
either we obtain

∑
j∈P dj ≥

∑
e∈Ê νe (Case 1), τe = 0 for all e ∈ Ê (Case 2) or we reach

|Ê| = 1 in which case the total payoff trivially equals OPT. J

I Lemma 4. For the strategy profile given in (6), the payoff of player j is given by

ρj = OPT · dj∑
j′∈P dj′

.

Proof. For θ ∈ [0, re) we have
∑
j∈P f

+
e,j(θ) =

∑
j∈P dj · ge,j(θ, T (θ)) > 0. We want to

examine the outflow rates for φ ∈ [τe, H). With (4) and θ = max T−1
e (φ) < re we obtain for
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all e ∈ E and j ∈ P that

f−e,j(φ) =
f+
e,j(θ)∑

j′∈P f
+
e,j′(θ)

·
∑
j′∈P

f−e,j′(φ)

= dj · ge,j(θ, T (θ))∑
j′∈P

dj′ · ge,j′(θ, T (θ)) ·
∑
j′∈P

f−e,j′(φ) = dj∑
j′∈P

dj′
·
∑
j′∈P

f−e,j′(φ).

Taking the integral over [0, H], summing over all edges e ∈ E and using Lemma 3, yields

ρj =
∑
e∈E

F−e,j(H) = dj∑
j′∈P

dj′
·
∑
e∈E

∑
j′∈P

F−e,j′(φ) = dj∑
j′∈P

dj′
·OPT .

J
With these two lemmas we can finally prove the following theorem.

I Theorem 5. The strategy profile (gj)j∈P given by (6) is a Nash equilibrium.

Proof. We want to observe what happens if one player j∗ deviates from her strategy in an
ex ante manner. For this let r := maxe∈E re be the point in time when the last edge becomes
inactive for the modified strategy-profile and let ρ :=

∑
j∈P ρj be the total amount of flow

arriving in time. Clearly, ρ ≤ OPT.
During [0, r] every non-deviating player j ∈ P \ { j∗ } sends all her flow into edges that

are still active, and therefore, all this flow arrives in time. Hence, her payoff is given by
ρj = dj · r.

Since no flow that enters after r can possibly arrive in time, player j∗ can achieve at
most a payoff of dj∗ · r. It follows that her share of the total amount of flow arriving in time
in upper bounded by dj∗∑

j∈P
dj
, i.e.,

ρj∗ ≤ ρ ·
dj∗∑
j∈P dj

≤ OPT · dj∗∑
j∈P dj

.

By Lemma 4 the right-side equals the payoff of player j∗ when choosing gj∗ as strategy.
Hence, she cannot improve her payoff by deviating, which shows that (gj)j∈P is indeed an
equilibrium. J

We observe the following: As long as the players constantly choose from the set of active
egdes and the summed payoff equals OPT, i.e., no queue runs dry in case of a restricted
network, the players’ payoffs stay the same. Hence, there is a whole class of Nash equilibria.

Next we want to show that this characterizes all possible Nash equilibria, which implies
that the price of anarchy is 1.

I Theorem 6. For atomic splittable flow over time games on parallel-edge networks where
exit times are provided as information with right-Lipschitz strategies, the price of anarchy
is 1.

Proof. The key observation is that every player j’s share of the total payoff
∑
j′∈P ρj′ is at

least dj/
∑
j′∈P dj′ as long as the player only sends flow into active edges E′(T (θ)). Also,

the total payoff is never decreased when a player shifts inflow from an inactive edge to an
active edge, since flow sent into inactive edges does not arrive in time. Note here that due to
the flow dynamics, the cumulative outflow function of an edge depends non-decreasingly on
the cumulative inflow function of the edge (more precisely, F−j,e(θ) ≥ F̂

−
j,e(θ) for all θ ∈ [0, H)
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τ = 10

τ = 10

τ = 1

τ = 1

e1

e2

s1 s2

v1

v2

t

Figure 4 A network with two non-symmetric players. We have t = t1 = t2. Player 1 must
commit to a split of her inflow rate at time θ before knowing the relevant information on the
congestion on e1 and e2 at time θ+ 10. Player 2 might use this to her advantage, which could lead
to the non-existence of Nash equilibria.

if F+
j,e(θ) ≥ F̂+

j,e(θ) for all θ ∈ [0, H)). Suppose we have a strategy profile g such that the
total payoff

∑
j∈P ρj is strictly smaller than OPT. Either one of the players’ shares of the

total payoff is strictly less than dj/
∑
j′∈P dj′ , so this player can improve, or all players have

a share of dj/
∑
j′∈P dj′ . But then there has to be an edge e where flow is wasted, which

means that the queue on e is empty and the total inflow rate is strictly smaller than the
capacity for a time span of positive measure when e is still active; instead, flow is sent into
inactive edges or edges with a queue, which hinders later flow to get to t in time. Hence, j
can improve by shifting flow from an inactive edge or edge with a queue, as this increases
the total payoff but does not decrease her share. Hence, in both cases g was not a Nash
equilibrium, which shows that the price of anarchy is 1. J

5 Further Research

The topic opens up a multitude of further research directions. First of all, either proving
or disproving the existence of Nash equilibria for more general networks for games with
information on the exit times. As the exit times do not cover all information that might
be necessary for the players to react, a responding player might have an advantage. This is
especially critical in games with non-symmetric players. To illustrate this difficulty consider
the network in Figure 4.

For this reason an interesting research direction would be to identify more general network
classes for which a Nash equilibrium still exists. Symmetric games where all players share
the same origin and the same destination might be a necessary restriction.

Additionally, the dependencies among different objective functions have not yet been
understood very well: Shedding light on whether the results for the maximum flow over
time objective translate to a quickest flow objective (maybe via binary-search) would be
very interesting. It might even be possible to consider the average arrived flow or the
average arrival time as payoff functions, which could then be compared to an earliest arrival
flow.

Finally, cooperative and non-cooperative models might be mixed in order to assess how
coalitions and selfish particles behave together (as e.g. in [7] for the static case).
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