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Abstract. Predicting selfish behavior in public environments by con-
sidering Nash equilibria is a central concept of game theory. For the
dynamic traffic assignment problem modeled by a flow over time game,
in which every particle tries to reach its destination as fast as possible,
the dynamic equilibria are called Nash flows over time. So far, this model
has only been considered for networks in which each arc is equipped with
a constant capacity, limiting the outflow rate, and with a transit time,
determining the time it takes for a particle to traverse the arc. However,
real-world traffic networks can be affected by temporal changes, for ex-
ample, caused by construction works or special speed zones during some
time period. To model these traffic scenarios appropriately, we extend the
flow over time model by time-dependent capacities and time-dependent
transit times. Our first main result is the characterization of the struc-
ture of Nash flows over time. Similar to the static-network model, the
strategies of the particles in dynamic equilibria can be characterized by
specific static flows, called thin flows with resetting. The second main
result is the existence of Nash flows over time, which we show in a con-
structive manner by extending a flow over time step by step by these
thin flows.

Keywords: Nash flows over time - dynamic equilibria - deterministic
queuing - time-varying networks - dynamic traffic assignment.

1 Introduction

In the last decade the technological advances in the mobility and communi-
cation sector have grown rapidly enabling access to real-time traffic data and
autonomous driving vehicles in the foreseeable future. One of the major advan-
tages of self-driving and communicating vehicles is the ability to directly use
information about the traffic network including the route-choice of other road
users. This holistic view of the network can be used to decrease travel times and
distribute the traffic volume more evenly over the network. As users will still
expect to travel along a fastest route it is important to incorporate game theo-
retical aspects when analyzing the dynamic traffic assignment. The results can
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then be used by network designers to identify bottlenecks beforehand, forecast
air pollution in dense urban areas and give feedback on network structures. In
order to obtain a better understanding of the complicated interplay between traf-
fic users it is important to develop strong mathematical models which represent
as many real-world traffic features as possible. Even though the more realistic
models consider a time-component, the network properties are considered to stay
constant in most cases. Surely, this is a serious drawback as real road networks
often have properties that vary over time. For example, the speed limit in school
zones is often reduced during school hours, roads might be completely or par-
tially blocked due to construction work and the direction of reversible lanes can
be switched, causing a change in the capacity in both directions. A more exotic,
but nonetheless important setting are evacuation scenarios. Consider an inhab-
ited region of low altitude with a high risk of flooding. As soon as there is a flood
warning everyone needs to be evacuated to some high-altitude-shelter. But, due
to the nature of rising water levels, roads with low altitude will be impassable
much sooner than roads of higher altitude. In order to plan an optimal evacua-
tion or simulate a chaotic equilibrium scenario it is essential to use a model with
time-varying properties. This research work is dedicated to providing a better
understanding of the impact of dynamic road properties on the traffic dynamics
in the Nash flow over time model. We will transfer all essential properties of Nash
flows over time in static networks to networks with time-varying properties.

1.1 Related Work

The fundamental concept for the model considered in this paper are flows over
time or dynamic flows, which were introduced back in 1956 by Ford and Fulk-
erson [89] in the context of optimization problems. The key idea is to add a
time-component to classical network flows, which means that the flow particles
need time to travel through the network. In 1959 Gale [10] showed the existence
of so called earliest arrival flows, which solve several optimization problems at
once, as they maximize the amount of flow reaching the sink at all points in time
simultaneously. Further work on these optimal flows is due to Wilkinson [26],
Fleischer and Tardos [7], Minieka [I8] and many others. For formal definitions
and a good overview of optimization problems in flow over time settings we refer
to the survey of Skutella [23].

In order to use flows over time for traffic modeling it is important to con-
sider game theoretic aspects. Some pioneer work goes back to Vickrey [24] and
Yagar [27]. In the context of classical (static) network flows, equilibria were intro-
duced by Wardrop [25] in 1952. In 2009 Koch and Skutella [15] (see also [16] and
Koch’s PhD thesis [I4]) started a fruitful research line by introducing dynamic
equilibria, also called Nash flows over time, which will be the central concept
in this paper. In a Nash flow over time every particle chooses a quickest path
from the origin to the destination, anticipating the route choice of all other flow
particles. Cominetti et al. showed the existence of Nash flows over time [3/4] and
studied the long term behavior [5]. Macko et al. [I7] studied the Braess paradox
in this model and Bhaskar et al. [I] and Correa et al. [6] bounded the price of
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anarchy under certain conditions. In 2018 Sering and Skutella [21] transferred
Nash flows over time to a model with multiple sources and multiple sinks and in
the following year Sering and Vargas Koch [22] considered Nash flows over time
in a model with spillback.

A different equilibrium concept in the same model was considered by Graf
et al. [I1] by introducing instantaneous dynamic equilibria. In these flows over
time the particles do not anticipate the further evolution of the flow, but instead
reevaluate their route choice at every node and continue their travel on a current
quickest path. In addition to that, there is an active research line on packet
routing games. Here, the traffic agents are modeled by atomic packets (vehicles)
of a specific size. This is often combined with discrete time steps. Some of the
recent work on this topic is due to Cao et al. [2], Harks et al. [I2], Peis et al. [19)]
and Scarsini et al. [20].

1.2 Overview and Contribution

In the base model, which was considered by Koch and Skutella [I6] and by the
follow up research [TJ3J4UBI6IT7I2T], the network is constant and each arc has a
constant capacity and constant transit time. In real-world traffic, however, tem-
porary changes of the infrastructure are omnipresent. In order to represent this,
we extend the base model to networks with time-varying capacities (including
the network inflow rate) and time-varying transit times.

We start in Section [2] by defining the flow dynamics of the deterministic
queuing model with time-varying arc properties and proving some first auxiliary
results. In particular, we describe how to turn time-dependent speed limits into
time-dependent transit times. In Section [3| we introduce some essential prop-
erties, such as the earliest arrival times, which enable us to define Nash flows
over time. As in the base model, it is still possible to characterize such a dy-
namic equilibrium by the underlying static flow. Taking the derivatives of these
parametrized static flows provides thin flows with resetting, which are defined in
Section 4l We show that the central results of the base model transfer to time-
varying networks, and in particular, that the derivatives of every Nash flow over
time form a thin flow with resetting. In Section [5| we show the reverse of this
statement: Nash flows over time can be constructed by a sequence of thin flows
with resetting, which, in the end, proves the existence of dynamic equilibria. We
close this section with a detailed example. Finally, in Section [f] we present a
conclusion and give a brief outlook on further research directions.

2 Flow Dynamics

We consider a directed graph G = (V, E) with a source s and a sink ¢ such
that each node is reachable by s. In contrast to the Koch-Skutella model, which
we will call base model from now on, this time each arc e is equipped with
a time-dependent capacity v.: [0,00) — (0,00) and a time-dependent speed
limit A.: [0,00) — (0,00), which is inversely proportional to the transit time.
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Fig. 1. Consider a road segment with time-dependent speed limit that is low in the
time interval [0, 1) and large afterwards. All vehicles, independent of their position, first
traverse the link slowly and immediately speed up to the new speed limit at time 1.

We consider a time-dependent network inflow rate r: [0, 00) — [0, 00) denoting
the flow rate at which particles enter the network at s. We assume that the
amount of flow an arc can support is unbounded and that the network inflow is
unbounded as well, i.e., for all e € E we require that

0 0 0
/ ve(§) d§ — oo, / Ae(6)dé — 0o and / r(€)dE — 0o for 6 — .
0 0 0

Later on, in order to be able to construct Nash flows over time, we will addition-
ally assume that all these functions are right-constant, i.e., for every 6 € [0, 00)
there exists an € > 0 such that the function is constant on [0, 6 + ¢).

Speed limits. Let us focus on the transit times first. We have to be careful how
to model the transit time changes, since we do not want to lose the following
two properties of the base model:

(i) We want to have the first-in-first-out (FIFO) property for arcs, which leads
to FIFO property of the network for Nash flows over time [16, Theorem 1].
(ii) Particles should never have the incentive to wait on a node.

In other words, we cannot simply allow piecewise-constant transit times, since
this could lead to the following case: If the transit time of an arc is high at the
beginning and gets reduced to a lower value at some later point in time, then
particles might overtake other particles on that arc. Thus, particles might arrive
earlier at the sink if they wait right in front of the arc until its transit time
drops. Hence, we let the speed limit change over time instead. In order to keep
the number of parameters of the network as small as possible, we assume that the
lengths of all arcs equal 1 and, instead of a transit time, we equip every arce € F
with a time-dependent speed limit A.: [0,00) — (0,00). Thus, a particle might
traverse the first part of an arc at a different speed than the remaining distance
if the maximal speed changes midway; see Figure

Transit times. Note that we assume the point queue of an arc to always right
in front of the exit. Hence, a particle entering arc e at time 6 immediately
traverses the arc of length 1 with a time-dependent speed of A.. The transit
time 7: [0,00) — [0, 00) is therefore given by

0+t
/9 ua)dg:l}.

Te(0) = min{ T>0
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Fig. 2. From speed limits (left side) to
transit times (right side). The transit
time 7.(0) denotes the time a particle
needs to traverse the arc when entering
at time 6. We normalize the speed limits
by assuming that all arcs have length 1,
and hence, the transit time 7.(f) equals
the length of an interval starting at 6 such
that the area under the speed limit graph
within this interval is 1.
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Fig.3. An illustration of how the flow
rate changes depending on the speed lim-
its. On the left: As the speed limit \ is
high, the flow volume entering the arc per
time unit is represented by the area of the
long rectangle. On the right: The speed
limit is halved, and therefore, the same
amount of flow needs twice as much time
to leave the arc (or enter the queue if there
is one). Hence, if there is no queue, the
outflow rate at time 7 4 7.(0) is only half
the size of the inflow rate at time 6.

Since we required foe Ae(€) d€ to be unbounded for § — oo, we always have a
finite transit time. For an illustrative example see Figure
The following lemma shows some basic properties of the transit times.

Lemma 1. For all e € E and almost all 6 € [0,00) we have:

(i) The function 6 — 0 + 7.(0) is strictly increasing.
(ii) The function 7. is continuous and almost everywhere differentiable.

(ii) For almost all 6 € [0,00) we have 1+ 7.(0) = M;\j—i(fe)(e))‘
These statement follow by simple computation and some basic Lebesgue
integral theorems. The proof can be found in the appendix on page [16}

Speed ratios. The ratio in Lemma will be important to measure the
outflow of an arc depending on the inflow. We call 7, : [0,00) — [0, 00) the speed
ratio of e and it is defined by 7.(0) = Mé\ii% = 1+ 7.(0). Figuratively
speaking, this ratio describes how much the flow rate changes under different
speed limits. If, for example, v.(0) = 2, as depicted in Figure |3} this means that
the speed limit was twice as high when the particle entered the arc as it is at
the moment the particle enters the queue. In this case the flow rate is halved on
its way, since the same amount of flow that entered within one time unit, needs
two time units to leave it. With the same intuition the flow rate is increased
whenever 7. () < 1. Note that in figures of other publications on flows over time
the flow rate is often pictured by the width of the flow. But for time-varying
networks this is not accurate anymore as the transit speed can vary. Hence, in
this paper the flow rates are given by the width of the flow multiplied by the
current speed limit.
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A flow over time is specified by a family of locally integrable and bounded
functions f = (f, f. )ecr denoting the in- and outflow rates. The cumulative
in- and outflows are given by

0 0
Fr ) = ) d nd F(0) = ~ (&) d€.
F0)= [ rHoa 0= [ 10
A flow over time conserves flow on all arcs e:
F(0+7.(0)) < Ff(0) for all 6 € [0, o0], (1)

and conserves flow at every node v € V\ {t} for almost all 6 € [0, 00):

UK Zf;<e>={f(9) e )

‘ a if v = s.
e€dy e€d,

A particle entering an arc e at time 6 reaches the head of the arc at time 6 +
T.(6) where it lines up at the point queue. Thereby, the queue size z.: [0, 00) —
[0,00) at time 6 + 7.(0) is defined by 2.(0 + 7.(0)) == F.7(0) — F. (6 + 7(0)).

We call a flow over time in a time-varying network feasible if we have for
almost all 6 € [0, 00) that

B B Ve (0 + 7e(9)) if 2e(0 + 7.(0)) > 0,
fe (6 +7(0) = {min{ ];{((g)),ue(ﬁ + 7(0)) } else, (3)

and f; (0) = 0 for almost all § < 7.(0).

Note that the outflow rate depends on the speed ratio 7.(6) if the queue is
empty (see Figure. Otherwise, the particles enter the queue, and therefore, the
outflow rate equals the capacity independent of the speed ratio. Furthermore,
we observe that every arc with a positive queue always has a positive outflow,
since the capacities are required to be strictly positive. And finally, implies
7 which can easily be seen by considering the derivatives of the cumulative
flows whenever we have an empty queue, i.e., F, (0 +7.(0)) = F.F(0). By (3) we
have that f; (6 + 7.(0)) - (1 + 7.(0)) < f.;F(6). Hence, and are sufficient
for a family of functions f = (f, f." )ecr to be a feasible flow over time.

The waiting time q.: [0,00) — [0, 00) of a particle that enters the arc at time

0 is defined by
0+71c(0)+q
/0 Vo) dE = 2.(0 +7.(6)) b

ge(f) =min{ ¢ >0
+7.(0)

As we required f09 Ve (€) d€ to be unbounded for §# — oo the set on the right side is

never empty. Hence, ¢.(0) is well-defined and has a finite value. In addition, g, is

continuous since v, is always strictly positive. The exit time T, : [0,00) — [0, 00)

denotes the time at which the particles that have entered the arc at time 6

finally leave the queue. Hence, we define T,(0) := 0 + 7.(0) + g.(0). In Figure

we display an illustrative example for the definition of waiting and exit times.
With these definitions we can show the following lemma.
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Fig. 4. Waiting times for time-dependent capacities. The waiting time of a particle 6y
(right side) is given by the length of the interval starting at 6o + 7.(6o) such that the
area underneath the capacity graph equals the queue size at time g +7.(6o) (left side).
The right boundary of the interval equals the exit time 7% (6o). The waiting time does
not only depend on the capacity but also on the inflow rate and the transit times. For
example, if the capacity and the speed limit are constant but the inflow rate is 0, the
waiting time will decrease with a slope of 1 (right side within [01,02]).

Lemma 2. For a feasible flow over time f it holds for alle € E, v € V and
6 € [0,00) that:

(i) ge(6) >0 < z.(0+71.(6)) > 0.
(1t) ze(0 4+ Te(0) + &) > 0 for all § € [0,¢.(0)).
(iii) FH(0) = F (Te(9))-
(iv) For 01 < Oy with FX(02) — FX(01) = 0 and z.(02 + 7e(02)) > 0 we have
T.(601) = Te(62).
(v) The functions T, are monotonically increasing.
(vi) The functions g. and T, are continuous and almost everywhere differentiable.

(vii) For almost all § € [0, 00) we have

. .
, e o=t
TI(0) = { *" )
maX{ 7@(0)7 m } clse.

Most of the statements follow immediately from the definitions and some
involve minor calculations. For we use Lebesgue’s differentiation theorem.
As the proof does not give any interesting further insights we moved it to the
appendix on page

3 Nash Flows Over Time

In order to define a dynamic equilibrium we consider the particles as players in
a dynamic game. For this the set of particles is identified by the non-negative
reals denoted by R>(. The flow volume is hereby given by the Lebesgue-measure,
which means that [a,b] C R>¢ with a < b contains a flow volume of b — a. The
flow particles enter the network according to the ordering of the reals beginning
with particle 0. It is worth noting that a particle ¢ € R>o can be split up
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further so that for example one half takes a different route than the other half.
As characterized by Koch and Skutella, a dynamic equilibrium is a feasible flow
over time, where almost all particles only use current shortest paths from s to t.
Note that we assume a game with full information. Consequently, all particles
know all speed limit and capacity functions in advance and have the ability to
perfectly predict the future evolution of the flow over time. Hence, each particle
perfectly knows all travel times and can choose its route accordingly. We start
by defining the earliest arrival times for a particle ¢ € R>g.

The earliest arrival time functions £,: R>¢ — [0, 00) map each particle ¢ to
the earliest time ¢,(¢) it can possibly reach node v. Hence, it is the solution to

min {9 >0 ] jo"r(g)dgzqs} for v = s,
bo(@) = min  T,(£,(9)) else. @)

e=uv€d,

Note that for all v € V' the earliest arrival time function ¢, is non-decreasing,
continuous and almost everywhere differentiable. This holds directly for ¢, and
for v # s it follows inductively, since these properties are preserved by the
concatenation T, o £,, and by the minimum of finitely many functions.

For a particle ¢ we call an arc e = wv active if £,(¢) = T.(,(¢)). The set
of all these arcs are denoted by E;) and these are exactly the arcs that form the
current shortest paths from s to some node v. For this reason we call the subgraph
G;S = (V, E(’ﬁ) the current shortest paths network for particle ¢. Note that G; is
acyclic and that every node is reachable by s within this graph. The arcs where
particle ¢ experiences a waiting time when traveling along shortest paths only
are called resetting arcs denoted by £ = {e =uv € E'| gc(lu(¢)) >0}.

Nash flows over time in time-varying networks are defined in the exact same
way as Cominetti et al. defined them in the base model [3, Definition 1].

Definition 1 (Nash flow over time). We call a feasible flow over time f a
Nash flow over time if the following Nash flow condition holds:

f£H0) >0 = 0€l,(P.) foralle=uveE and almost all 6 € [0,00), (N)

where @, :={$ € R | e € £}, } is the set of particles for which arc e is active.

As Cominetti et al. showed in [4, Theorem 1] these Nash flows over time can
be characterized as follows.

Lemma 3. A feasible flow over time f is a Nash flow over time if, and only if,
for alle =uv € E and all ¢ € R>o we have FF (£,(¢)) = F. (L,(¢)).

€

Since the exit and the earliest arrival times have the same properties in time-
varying networks as in the base model, this lemma follows with the exact same
proof that was given by Cominetti et al. for the base model [4, Theorem 1]. The
same is true for the following lemma; see [4, Proposition 2].
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Lemma 4. Given a Nash flow over time the following holds for all particles ¢:

(i) E; C E),.
(it) By ={e=uv|ly(d) > lu(d) + 1e(0) }.
(iii) Ej={e=uv|Lly(p) > lu(¢) +7(6) }.

Motivated by Lemma@ we define the underlying static flow for ¢ € R>g by
To(p) = FF (L,(9)) = F. (£y(¢)) for all e = uv € E.

By the definition of ¢ and the integration of (2)) we have foﬁs(d)) r(§)d¢ = ¢, and
hence, z.(¢) is a static s-t-flow (classical network flow) of value ¢, whereas the
derivatives (2, (¢))ccr form a static s-t-flow of value 1.

4 Thin Flows

Thin flows with resetting, introduced by Koch and Skutella [16], characterize the
derivatives (21)ccp and (£)),ecv of Nash flows over time in the base model. In
the following we will transfer this concept to time-varying networks.

Consider an acyclic network G’ = (V, E') with a source s and a sink ¢, such
that every node is reachable by s. Each arc is equipped with a capacity v, > 0
and a speed ratio 7. > 0. Furthermore, we have a network inflow rate of r > 0
and an arc set E* C E’. We obtain the following definition.

Definition 2 (Thin flow with resetting in a time-varying network).
A static s-t flow (xl)ecr of value 1 together with a node labeling (£))pey is
a thin flow with resetting on E* if:

1
v =1 (TF1)
r
0 = 7IIliI€1E, pe(ll,zl)  forallveV\{s}, (TF2)
0= pe(l,, ) for all e = wv € E" with 2, > 0, (TF3)

’
€T .
—= ife=uwv e E*,

where 0 xl) =" /
pe( ) max{'ye%;,i—e} if e =uv € E'\E*.

The derivatives of a Nash flow over time in time-varying networks do indeed
form a thin flow with resetting as the following theorem shows.

Theorem 1. For almost all € R the derivatives (x’e(qb))ee% and (0, (6))vev
of a Nash flow over time f = (f, 7 )ecr form a thin flow with resetting
on E% in the current shortest paths network G!, = (V,E}) with network in-
flow rate r(£5(p)) as well as capacities ve(Ly(¢)) and speed ratios ve(€y(P)) for
each arc e =uwv € E.
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Proof. Let ¢ € R> be a particle such that for all arcs e = uv € E the derivatives
of xe, £y, Te 0 by, and 7 exist and z.(¢) = fiF (Cu(P)) - £,(P) = fo (Lu(d)) - £, (@)
as well as 1+ 7/(¢,, (d))) = ’ye (£, (@)). This is given for almost all ¢.

By . we have fo (@), (&) d€ = ¢ and taking the derivative by applying the
chain rule, yields r (¢, (qS)) 0 (¢) = 1, which shows (TF1J).

Taking the derivative of (4)) at time £, (¢) by using the differentiation rule for
a minimum (Lemma [7] in the appendix) yields £,(¢) = mine—yver T.(Cu(9)) -
2, (¢). By using Lemma we obtain

_ S u(9) 4 (¢) if QP(EU(QS)) >0
T/ (6u(9)) - £(9) = { OCh@ ") ' ’
(£u(9)) - €.(0) max{%(ﬁm)),%}%(@ else,
= pe(l,(9), 7(0)),

which shows (TF2]).
Finally, in the case of f (¢,(9)) - £, (¢) = z,(¢) > 0 we have by (3) that

ty(¢) =

else,

max { 7o (€a(6)) - £,(0), 555105 b if e € BL\E;,
z(9) ifee Ex,

(€u(0), ze(8))-
This shows (TF3|) and finishes the proof. O

LA :
¥ if qe(gu(gb)) = 07
{min L) ve(bu(9)) }
= Pe

In order to construct Nash flows over time in time-varying networks, we first
have to show that there always exists a thin flow with resetting.

Theorem 2. Consider an acyclic graph G' = (V,E') with source s, sink t,
capacities v, > 0, speed ratios v, > 0 and a subset of arcs E* C E’, as well as a
network inflow r > 0. Furthermore, suppose that every node is reachable from s.
Then there exists a thin flow ((z))eer, (€))vev) with resetting on E*.

This proof works exactly as the proof for the existence of thin flows in the
base model presented by Cominetti et al. [4, Theorem 3]. In addition, a detailed
proof utilizing Kakutani’s fixed point theorem is given in the appendix.

5 Constructing Nash Flows Over Time

In the remaining part of this paper we assume that for all e € E the functions v,
and A, as well as the network inflow rate function r are right-constant. In order
to show the existence of Nash flows over time in time-varying networks we use
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the same a-extension approach as used by Koch and Skutella in [16] for the base
model. The key idea is to start with the empty flow over time and expand it
step by step by using a thin flow with resetting.

Given a restricted Nash flow over time f on [0, ¢], i.e., a Nash flow over time
where only the particles in [0, ¢] are considered, we obtain well-defined earliest
arrival times (£,(¢)),cv for particle ¢. Hence, by Lemma || we can determine
the current shortest paths network G = (V, Ej}) with the resetting arcs Ej,
the capacities v (¢,(¢)) and speed ratios 7.(¢,(¢)) for all arcs e = uv € E' as
well as the network inflow rate r(¢5(¢)). By Theorem [2| there exists a thin flow
((2¢)ecr s (€, )vev) on G7, with resetting on EY. For e ¢ E, we set z; = 0. We
extend the /- and z-functions for some « > 0 by

ly(p+ &) =1L,(9)+ &0, and x.(P) = we(dp) + & - 2, for all £ € [0, @)

and the in- and outflow rate functions by

/

f:(@) = %Ie for 6 € [0,(4), lu(P+0a)); f;(@) = % for 6 € [0,(9), Lu(P+a)).

We call this extended flow over time a-extension. Note that ¢, = 0 means that
[0u(9), Lu(¢ + «)) is empty, and the same holds for £,,.

An a-extension is a restricted Nash flow over time, which we will prove later
on, as long as the a stays within reasonable bounds. Similar to the base model
we have to ensure that resetting arcs stay resetting and non-active arcs stay
non-active for all particles in [¢, ¢ + «). Since the transit times may now vary
over time, we have the following conditions for all £ € [0, «):

Cy(@) + &0y, = Lu(B) =& -, > Te(Lu(d) +£-£,,))  for every e € B, (5)
Co(@) + &L, — Lu(d) = &L, < Te(Lu(d) +E-£,)) forevery ec E\ Ej. (6)

Furthermore, we need to ensure that the capacities of all active arcs and the
network inflow rate do not change within the phase:

Ve(ly(®)) = ve(lo(p) + € - £,)  for every e € Ej and all £ € [0,a).  (7)
r(ls()) = r(ls(¢) +&-£;)  forall € €[0,q). (8)
Finally, the speed ratios need to stay constant for all active arcs, i.e.,
Ye(lu(®)) = Ye(lu(@) + & - £,) forevery e € Ej, and all { € [0,a).  (9)
We call an a > 0 feasible if it satisfies (5)) to (9).

Lemma 5. Given a restricted Nash flow over time f on [0,d] then for right-
constant capacities and speed limits there always exists a feasible a > 0.

Proof. By Lemma we have that £,(¢) — £u(¢) > 7e(¢) for all e € E and
() —Lu(9) < 7e(¢) for all e € E'\ E,. Since 7. is continuous there is an oy > 0
such that and @ are satisfied for all £ € [0,;). Since v, r and A, are
right-constant so is 7., and hence, there is an as > 0 such that , and @
are fulfilled for all £ € [0, az). Clearly, a := min { a3, g } > 0 is feasible. O
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For the maximal feasible o we call the interval [¢, ¢ + «) a thin flow phase.

Lemma 6. An a-extension is a feasible flow over time and the extended (-labels
coincide with the earliest arrival times, i.e., they satisfy Equation for all

€ p,0+a).

The final step is to show that an a-extension is a restricted Nash flow over
time on [0, ¢ + ) and that we can continue this process up to oco.

Theorem 3. Given a restricted Nash flow over time f = (fF, f7 )ecr on [0,¢)
in a time-varying network and a feasible o > 0 then the a-extension is a re-
stricted Nash flow over time on [0, ¢ + ).

Proof. Lemmal3|yields F.7 (£,(p)) = F(£,()) for all ¢ € [0, ¢), so for £ € [0, @)
it holds that

xl _ xl _
FE(Lu(948)) = FE(Lu(9)) + 57 -4, = o (0o(9)) + 5764, = Fe (Lu(0+6)).
It follows again by Lemma [3] together with Lemma [6] that the a-extension is a
restricted Nash flow over time on [0, ¢ + «). O

Finally, we obtain our main result:

Theorem 4. There exists a Nash flow over time in every time-varying network
with right-constant speed limits, capacities and network inflow rates.

Proof. The process starts with the empty flow over time, i.e., a restricted Nash
flow over time for [0,0). We apply Theorem [3[ with a maximal feasible «. If one
of the « is unbounded we are done. Otherwise, we obtain a sequence (f;);en,
where f; is a restricted Nash flow over time for [0, ¢;), with a strictly increasing
sequence (¢;);en. In the case that this sequence has a finite limit, say ¢, < 00,
we define a restricted Nash flow over time f° for [0, ¢ ) by using the point-wise
limit of the z- and ¢-labels, which exists due to monotonicity and boundedness
of these functions. Note that there are only finitely many different thin flows,
and therefore, the derivatives x’ and ¢’ are bounded. Then the process can be
restarted from this limit point. This so called transfinite induction argument
works as follows: Let Pg be the set of all particles ¢ € R>( for which there
exists a restricted Nash flow over time on [0, ¢) constructed as described above.
The set P cannot have a maximal element because the corresponding Nash flow
over time could be extended by using Theorem [3] But P¢ cannot have an upper
bound either since the limit of any convergent sequence would be contained in
this set. Therefore, there exists an unbounded increasing sequence (¢;)°, € Pg.
As a restricted Nash flow over time on [0, ¢;11] contains a restricted Nash flow
over time on [0, ¢;] we can assume that there exists a sequence of nested restricted
Nash flow over time. Hence, we can construct a Nash flow over time f on [0, c0)
by taking the point-wise limit of the x- and ¢-labels, completing the proof. [
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Wl
Wl

¢ € [12,16)

|

Fig. 5. A Nash flow over time with seven thin flow phases in a time-varying network.
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Example. An example of a Nash flow over time in a time-varying network
together with the corresponding thin flows is shown in Figure[5|on the next page.
On the top: The network properties before time 8 (left side) and after time 8
(right side). In the middle: There are seven thin flow phases. Note that the third
and forth phase (both depicted in the same network) are almost identical and
only the speed ratio of arc vt changes, which does not influence the thin flow at
all. At the bottom: Some key snapshots in time of the resulting Nash flow over
time. The current speed limit \,; is visualized by the length of the green arrow
and, for @ > 8, the reduced capacity vs,(0) is displayed by a red bottle-neck.
As displayed at the top the capacity of arc su drops from 2 to 1 at time 8
and, at the same time, the speed limit of arc vt decreases from % to %. The first
event for particle 4 is due to a change of the speed ratio leading to an increase
of ¢;. For particle 6, the top path becomes active and is taken by all following
flow as particles on arc vt are still slowed down. For particle 8, the speed ratio
at arc vt changes back to 1 but, as this arc is inactive, this does not change
anything. Particle 12 is the first to experience the reduced capacity on arc su.
The corresponding queue of this arc increases until the bottom path becomes
active. This happens in two steps: first only the path up to node v becomes
active for ¢ = 16, and finally, the complete path is active from ¢ = 20 onwards.

6 Conclusion and Open Problems

In this paper, we extended the base model that was introduced by Koch and
Skutella, to networks which capacities and speed limits that changes over time.
We showed that all central results, namely the existence of dynamic equilibria
and their underlying structures in form of thin flow with resetting, can be trans-
fered to this new model. With these new insights it is possible to model more
general traffic scenarios in which the network properties are time-dependent. In
particular, the flooding evacuation scenario, which was mentioned in the intro-
duction, could not be modeled (not even approximately) in the base model.

There are still a lot of open question concerning time-varying networks. For
example, it would be interesting to consider other flows over time in this setting,
such as earliest arrival flows or instantaneous dynamic equilibria (see [II]) and
show their existence. Can the proof for the bound of the price of anarchy [0]
be transfered to this model, or is it possible to construct an example where the
price of anarchy is unbounded?
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7 Appendix: Technical Proofs

Lemma 1. For all e € E and almost all 6 € [0, 00) we have:

(i) The function 6 — 0 + 7.(0) is strictly increasing.
(ii) The function 7. is continuous and almost everywhere differentiable.

(ii) For almost all 0 € [0,00) we have 1 + 7.(0) = M(;\ii(ri)(e))'

Proof. Consider two points in time 61 < 6o, then 7 1= 01 — 03 + 7.(61) is
strictly smaller than 7.(f2) since

O2+1 01+7c(61) 0147 (01)
/ A (€) dé = A (€) dé < / M(€)de = 1,

6o 6> 01

where the strict inequality holds, since A, is always strictly positive. The
last equality follows by the definition of 7.(61). Hence, with the definition of
Te(gg) we have 61 + Te(gl) < 6y + 76(02).

Since 6 — 0+ 7.(0) is monotone, Lebesgue’s theorem for the differentiability
of monotone functions implies that it is almost everywhere differentiable. The
same is then true for 7.. The continuity follows directly from the definition
since ) is always strictly positive.

(iii)| By the definition of 7.(#) we have

0471 (0) 0
/ M (€) de —/ Ao(€) dé = 1.
0 0

Taking the derivatives of both sides and using Lebesgue’s differentiation
theorem together with the chain rule, we obtain

Ae(0 + 7e(0)) - (14 72(0)) — Ae(6) = 0.

Since A, is always strictly positive, we get

Lo Ae(0)
1470 = S o+ o)) -

Lemma 2. For a feasible flow over time f it holds for alle € E, v € V and
6 € [0,00) that:

(i) ge(0) >0 < z.(0+71.(6)) > 0.
(11) ze(0+ Te(0) + &) > 0 for all § € [0,¢.(0)).
(iii) F7(0) = F. (T.(0)).
(iv) For 01 < Oy with FX(02) — FX(01) = 0 and z.(02 + 7e(f2)) > 0 we have
T.(601) =T.(62).
(v) The functions T, are monotonically increasing.
(vi) The functions q. and T, are continuous and almost everywhere differentiable.
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(vii) For almost all € [0,00) we have

1) )
T!(0) = Ve (Te(0)) . if ge(0) > 0,
e - 0
max{ 76(0)7 %j(z)) } else.

Proof. This follows directly from the definition of the waiting time g..
By equation we have that £ (§) < v.(§) almost everywhere. Hence, we
have by definition that g.(6) is the minimal value such that

0+7c(0)+q(0)
/ Ve(€) dE = 2.(0 + 7.(6)).

0+71c(0)

Thus, we obtain for £ € [0, g.(0)) that

9+Te(9)+€
Fo (04 72(6) +€) — F (0 + (6 / (€) de
0+47c 9)
9+re(9)+£
< / £) de

<z 9+Te(a))
= F(0) = (0 + 7e(6))-

Or in short: FJF(0) — F. (0 + 7.(0) + &) > 0 for £ € [0,¢.(0)). Since F. is
non-decreasing we obtain for all £ € [0, ¢.(0)) that

2e (047 (0)+&) = F (0+&) —F; (0+7.(0)+&) > F.F (0)—F; (0+7.(0)+¢) >0.

By (B) and[(ii)] we obtain for almost all £ € [0 + 7¢(6),0 + 7(0) + g.(6)) that
fo (&) = ve(§). By the definition of ¢, we have

0+7e (6)+qe ()

EZ(0+70(8) +00(8)) — F (6 + 7o(8)) = / £ () de

0+7(0)

047 (0)+q(0)
- / ve(€) de

0+71c(0)
= z.(0 + 7(6))
= F(0) — F. (0 + 7e(0))-
Hence, F; (T.(0)) = F.F ().
Since F.F(01) = F.t(f2) we obtain with the monotonicity of F,  together
with Lemma that

2e(§+ 7€) = FF (&) — F(E+7e(8))
> Fj(eg) — FE_(QQ + Te(ez)) = 25(92 + Te(eg)) >0



18 H. M. Pham and L. Sering

hence, (3)) provides f; (&) = v (&) for almost all £ € [0y + 7.(01), 02 + 7.(02)].
Thus, the definition of ¢, implies that ¢.(61) equals

92+T5(92) 01+Te (01)+q
/ (€ de + / ve(€) de
0

1+7'e(01) 92+Te(92)
= F}(01) — F; (01 +7.(01))

2+7e (02)

O2+7c(02)+p
— min { p>0 /0 l/e(f) df = FJ(QQ)*Fg(az‘FTe(@Q)) }

+ 0, +7-e(92)_91_7—e(91)
= QE(92) + 92 + 76(92) - 91 - Te(el)-

Here, we substitute ¢ by p + 02 + 7.(62) — 01 — 7.(01) in order to obtain the
first equation. Note that the condition p > 0 is always satisfied since the right
hand side FF(03) — F. (02 + 7.(02)) equals z.(02 + 7.(02)) and is therefore
strictly positive by assumption. Hence, we obtain

To(01) = 01 + 7(01) + qe(61) = 02 + 7(02) + qc(62) = Tc(02).

Considering two points in time 6; < 6, we show that T,(61) < T.(6,). Since
F' is non-decreasing, implies that

Fy (Te(02)) = F(02) > F(01) = F (Te(61)). (10)

If this holds with strict inequality, we obtain by monotonicity of F,  that
T.(01) < Te(62). If equation holds with equality we have two cases. If
2e (02 + 7(62)) > 0, states that T,(61) = T.(02). If z.(02 + 7.(62)) = 0,
(i1)| applied to 6; implies that & = 0y + 7.(02) — 01 — 7(01) € [0,q.(61)).
Since £ > 0 by Lemma we have £ > ¢.(01), and thus,

T,(02) D0y 1+ 7.(65) > 01+ 7.(01) + 40 (61) = To(6,).

The continuity of g. follows since v, is always strictly positive and z. is

continuous, as it is the difference of two continuous functions. Finally, T, is
continuous since it is the sum of three continuous functions.
Bythe function T, is non-decreasing for all e € F, and hence, Lebesgue’s
theorem for the differentiability of monotone functions states that T, is al-
most everywhere differentiable. Since 6 — 6 + 7.(0) is monotone this also
holds for 7. since it is the difference of two almost everywhere differen-
tiable functions. As a sum of almost everywhere differentiable functions,
qe(0) = Te(6) — 7 (0) — 0 has this property as well.

The definition of g.(6) states that

T (0) 0+7.(0)
/0 ve(€) dé / Ve(€) € = 2,(0+7.(0)) = FH(0) — F (0+7.(0)).

Taking the derivative on both sides we obtain by using the chain rule that
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ve(Te(0)) TL(0) = ve(0+7(0))- (1+7L(0)) = £ (0) = fo (0+7e(0))- (1+7.(0)).

If g.(0) > 0 we have by equation (3) that f, (6 + 7.(6)) = ve(0 + 7.(0)), and
therefore, dividing by v.(T.(6)) (which is strictly positive by assumption)
yields

sy Je ()
R )
For ¢.(#) = 0 we have f7 (6 + 7.(0)) = min{ J;{((g)),ue(e—i—n(@))} and

T.(0) = 0 + 7.(0). Hence, dividing by ve(0 + 7.(0)) = ve(Te(0)) and using
Lemma |1}f(iii)| provides

- U G- U 2
10 =0+ 5y ] g O

f&(9) }
ve(Te(0)) ’

=nmx{w4w,

which finishes the proof.

Theorem 2. Consider an acyclic graph G' = (V,E') with source s, sink t,
capacities ve > 0, speed ratios v > 0 and a subset of arcs E* C E’, as well as a
network inflow r > 0. Furthermore, suppose that every node is reachable from s.
Then there exists a thin flow ((z))cer, (€))vev) with resetting on E*.

Proof. Let X be the compact, convex and non-empty set of all static s-t-flows
of value 1 and let I': X — 2% be defined by

oo {y € X[y =0 forall e —uv € B with £ < p.(620) }.

where (£)),cv are the node labels associated with 2’ uniquely defined by

p % if v = s,
v minE pe(ll,,zl) fveV\{s}. (11)
e=uveE’
The existence of a fixed point of I" is provided by Kakutani’s fixed point
theorem [13]

Theorem 5 (Kakutani’s Fixed Point Theorem). Let X be a compact, con-
vex and non-empty subset of R® and I': X — 2%, such that for every x € X
the image I'(x) is non-empty and convex. Suppose the set { (z,y) |y € I'(x) } is
closed. Then there exists a fized point x* € X of T, i.e., z* € T'(z*).

All conditions are satisfied:

— The set I'(z') is non-empty, because there has to be at least one path P
from s to t with ¢, = p.(¢.,, ) for each arc e on P. If we set y. = 1 for all

u’ €

arcs e on P and set every other value to 0 we obtain an element in I'(2').
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— To see that I'(z') is convex, note that the arcs that can be used for sending
flow, i.e., the ones satisfying ¢/ = p. (£, x.), are fixed within the set I'(z’).
Furthermore, every convex combination y of two elements y',y? € I'(z')
only uses arcs that are also used by y' or 2.

— In order to show that the function graph { (z',y’) | ¥’ € I'(z) } is closed let
(™, y")nen be a sequence within this set, i.e., y™ € I'(x™). Since both se-
quences, (™), ey and (y™)nen, are contained in the compact set X they both
have a limit 2* and y* within X. Let (¢™),ecn be the sequence of associated
node labels of (") and ¢* the node label of z*. Note that the mapping
2 +— (' is continuous, and therefore, it holds that ¢* = lim, o, £". We
prove that y* € I'(z*). Suppose there is an arc e = uv € F’ with y* > 0
and £} < pe(£;,xk). But since p. is continuous there has to be an ng € N
such that y? > 0 and £ < p(¢2, 27) for all n > ng, which is a contradiction.
Hence, { (¢/,y") | v/ € I'(x) } is closed.

Since all conditions for Kakutani’s fixed point theorem are satisfied, there
has to be a fixed point x* of I'. Let £* be the corresponding node labeling. We
show that the pair (z*,£*) satisfies the thin flow conditions. Equations (TF1))
and follow immediately by . For every arc e = uv € E’ with % > 0 it
holds that £ = p.(¢%, x%) since 2* € I'(z*), which shows Equation (TF3)). Thus,
(z*, £*) forms a thin flow with resetting, which completes the proof. O

Lemma 6. An a-extension is a feasible flow over time and the extended (-labels
coincide with the earliest arrival times, i.e., they satisfy Equation for all

€ lp, 0+ ).

Proof. Flow conservation on nodes holds since for all 8 € [£,(¢), £, (¢ + a))
we have

o o o o [0 ifveV\{st}
2{6(9) Z{ O=> 7= 7 _{r(gs(@)e if v =s.

e€dt (v e€d~ (v ecdt(v) Y e€d—(v) Y

Next, we show that the feasibility condition is satisfied. For this we first
consider arcs e with x > 0, which implies e € EJ. By we have that
0> Ye(Ly(9)) - £,,. Since 7 is constant during the thin flow phase, so is 7/, and
therefore, we have for all £ € [0, ) that

In other words, e stays active during the thin flow phase.
We consider the outflow rate at time 6 + 7.(0) for 6 € [€,,(¢), Lu(d + @)). In
the case of 0 + 7.(0) < £,(¢) the feasibility condition follows from prior phases.
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Otherwise, 0 + 7.(0) € [£,(¢), 4y(¢ + @)), and therefore,

B xl, (TF3) xl
170+ 7e(6)) = Ze O3

L, pe(lyy, )

_ mm{imﬁﬁﬁﬁqaw»} ifee B\ B,
Ve(£y(0)) else,

_ [win{ LR v +7.0) ) ifa(0) =0,
Ve (0 + 71.(0)) else.

In the case that z, = 0 we either have ¢, = 0, but then there is nothing to show
since the interval [¢,(¢), £,(¢ + «)) would be empty, or ¢, > 0, which means by
that either e is not active, or it is active but non-resetting. In both cases we
have g (£, (0)) = 0 and since f(¢,,(8)) = 0 for all 6 € [(,,(¢, L., (¢+)) the queue
stays empty during this phase. (3)) follows since f; (6 + 7(0)) = % =0=f1(0)
holds for all 6 € [£,(¢,0,(¢ + «)). Altogether, we showed that the a-extension
is indeed a feasible flow over time.

It remains to show that Equation holds, which implies that the extended
{-functions denote the earliest arrival times. First of all we have

Ls (d+E) Ls(p4E€)
/ r@m&=¢+/‘ F(E)dE = §+ r(ta(d) 0, € = S+ £
0 Ls(9)

Since r is always strictly positive, £5(¢) is the minimal value with this property,
which shows for v = s. For v # s we distinguish between three cases for
every given arc e = uv € E.

Case 1: e € E\E),.
Since « satisfies it is satisfied for all £ € [0, «), and hence,

Zv((b + §) = Zv(gb) + 5 : e;dgbfu((b) +‘5 : % + Te(éu(qj) + f : Z;)
SLu(@+8) +Te(lu(d+6)) < Te(lu(d+£)).

Case 2: e € E)\E} and 7. (Cu(9)) - £, > #;(@).
Since e is active we have £, (¢) = To(£y())) = Lu(d)+7e(£u(d)) and implies
0 < ~e(ly())-L,,. No queue builds up as f (£, (¢ +&)) = % < ve(ly(¢)), which

means 2z (€, (¢ + &) + 7 (Lu(¢))) = 0 for all £ € (0, @]. Combining these yields

(TEF2)

ly(p+&) <

~

(@) + & 7e(lu(9)) - £,

w(@) + Te(Cu(9)) + & (1 + 70 (Lu(9)) - £,
w(@+ &) + 1e(lu(d +£))

(Lulo +8))-

S

|
%
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Case 3: e € E or (e € By and v (Lu(9)) - £, < m)
Arc e is active ,i.e., £,(¢) = Te(€y(¢)). We have p. (£, z,) = m, and hence,
(TF2)) implies £, < W Lemma (vii)| yields

)

Te(Lu(9))

ve(lu(9)) a - ve(lu(9))

since either q.(£,(¢)) > 0 (if e € E*) or, in the case of e ¢ E%, we have
o)
Ve(lu(9)) - ve(lu(9))

Hence, for all £ € (0, a] we obtain

> Ve (u()).

L0+ vt <) +e

e

= Te(lu(9)) + & To(lu(9)) - £, = Te(lu(d + €))-

This shows that there is no arc with an exit time earlier than the earliest arrival
time, and therefore, the left hand side of is always smaller or equal to the
right hand side.

It remains to show that the equation holds with equality. For every node
v € V\ {5} there is at least one arc e € E’ with ¢, = p.(¢,,,2.) in the thin flow

due to (TF2). No matter if this arc belongs to Case 2 or Case 3 the corresponding
equation holds with equality, which shows for all £ € (0, o] that

Ly(p+ f) = ezrg;ljrelETe(gu((b + 5))

This shows that is also satisfied for v # s, which completes the proof. O

Lemma 7 (Differentiation rule for a minimum). For every element e of a
finite set E let T, : R>o — R be a function that is differentiable almost everywhere
and let £(0) = mineecg Te(0) for all 6 > 0. It holds that | is almost everywhere
differentiable with
/'(6) = min T.(0) (12)
e€Ey
for almost all 6 > 0 where Ejy :=={ec E | {(§) =T.(0) }.

Proof. Let ¢ > 0 such that all T,, for all e € F, are differentiable, which is almost
everywhere. Since all functions T, are continuous at ¢ we have for sufficiently
small ¢ > 0 that ¢(¢ + &) = rnineeg;5 T (¢ + &) for all € € [¢, ¢ + €]. Tt follows
that

fim (OTO =S _ o Te0+0) —U@)
Y ¢ £N0ceE), ¢
= min lim Te(9+8) —Te(9) — min 7/(¢).

e€EEL €0 & cEE),
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Note that every point ¢ where all T, are differentiable, but for which the left
derivative of £ does not coincide with the right derivative of ¢, is a proper crossing
of at least two T, functions. Therefore, these points are isolated and form a null
set. Hence, we have ¢/(¢) = minee g T!(¢) for almost all ¢ € R>o. O
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