
Dissertation

Nash Flows Over Time

Leon Sering





Nash Flows Over Time

vorgelegt von

M. Sc. Leon Sering
ORCID: 0000-0003-2953-1115

an der Fakultät II – Mathematik und Naturwissenschaften

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender Prof. Dr. John M. Sullivan

Gutachter Prof. Dr. Martin Skutella

Prof. Dr. José Correa

Prof. Dr. Neil Olver

Tag der wissenschaftlichen Aussprache: 28. September 2020

Berlin 2020

https://orcid.org/0000-0003-2953-1115


Leon Sering

Nash Flows Over Time

Dissertation, Berlin 2020

Reviewers: Prof. Dr. Martin Skutella, Prof. Dr. José Correa and Prof. Dr. Neil Olver

Technische Universität Berlin

Combinatorial Optimization & Graph Algorithms

Institute of Mathematics

Straße des 17. Juni 136

10623 Berlin



Acknowledgments

This thesis is the result of three great years in the Combinatorial Optimization & Graph Algorithm
(COGA) research group at TU Berlin and I met a lot of wonderful people along the way.
First of all, I want to thank my advisor Martin Skutella. He hired me, even though I was calling
for the job interview from somewhere in the middle of nowhere in Australia with a very rough
connection. I am especially thankful that he introduced me to this amazing topic of Nash flows over
time and for all the inspiring ideas he contributed during the years. He also made it possible that I
had not to worry about any financial barriers and could visit a lot of international conferences and
workshops. In this regard, I shall not forget to mention and thank the Reseach Center Matheon and
MATH+ for all the funding they provided.
I was very lucky to meet Laura Vargas Koch in December 2017. It is no understatement to say
that this was a huge boost to my research. It became clear very quickly that we have a very similar
approach on mathematical problems and the result of this highly productive collaboration can be
seen in this thesis. Thank you very much, for all the great discussions and ideas, for the productive
time and the great research visits, and last but not least, for your friendship.
I also want to thank José Correa for inviting me to Chile and all the further participants of the two
very nice Nash flow workshops in Santiago de Chile and in Berlin: Neil Olver, Laura Vargas Koch,
Tim Oosterwijk, Andrés Cristi, Dario Frascaria and Marcus Kaiser. It was a great time in Chile
and a pleasure to host you in Berlin. You are truly great people to work with.
I want to thank my co-authors Lukas Graf and Tobias Harks for the great collaboration and
interesting discussions and Britta Peis for inviting me to Aachen and providing some great ideas. I
am very grateful to Theresa Thunig for all of her great insights into the traffic science community
and the simulation software MATSim and to Miriam Schlöter and Veerle Timmermans for the great
scientific and non-scientific discussions in the last years. I should not forget to thank Max Zimmer
for his great work on the Nash Flow Computation Tool. You did a great implementation job and this
tool saved me so many hours of constructing examples.
Finally, I want to thank my girlfriend Jennifer Manke for all the great years, the huge support during
my doctoral studies, and in particular for spell-checking this thesis. Without your help there would
be a lot less pleasure in my life and a lot more typos in the following text. Thank you for everything.
I love you.



Contents

1 Introduction 1
1.1 Contribution and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 9
2.1 Graphs and Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Static Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Variational Inequalities and a Fixed Point Theorem . . . . . . . . . . . . . . . . . . . 19
2.5.1 Finite-dimensional Variational Inequalities . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Variational Inequalities in Infinite-dimensional Function Spaces. . . . . . . . . 20
2.5.3 Kakutani’s Fixed Point Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Linear and Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 The Base Model 27
3.1 Modeling Road Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Deterministic Queuing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Nash Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Thin Flows with Resetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Constructing Nash Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6.1 Mixed Integer Programs for Thin Flow Computations . . . . . . . . . . . . . . 39
3.6.2 Uniqueness of Earliest Arrival Times . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.3 Prices of Anarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.4 Long-Term Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 Appendix: Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Time-Dependent Networks 53
4.1 Arc Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Nash Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Thin Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Constructing Nash Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Appendix: Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



5 Multiple Commodities 69
5.1 Multi-Commodity Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Flow Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Multi-Commodity Nash Flows Over Time . . . . . . . . . . . . . . . . . . . . . 72
5.1.3 Multi-Commodity Thin Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.4 Existence of Multi-Commodity Nash Flows Over Time . . . . . . . . . . . . . . 77

5.2 Common Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Common Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Appendix: Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Spillback and Kinematic Waves 95
6.1 Modeling Kinematic Wave Road Networks . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Flow Dynamics for Spillback and Kinematic Waves . . . . . . . . . . . . . . . . . . . 96
6.3 Nash Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Spillback Thin Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Existence of Spillback Thin Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.6 Constructing Nash Flows Over Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.7 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7.1 Non-Uniqueness of Earliest Arrival Times . . . . . . . . . . . . . . . . . . . . 111
6.7.2 Unbounded Prices of Anarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.8 Appendix: Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Instantaneous Dynamic Equilibria 125
7.1 Flow dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Instantaneous Dynamic Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3 Thin Flows for Instantaneous Dynamic Equilibria . . . . . . . . . . . . . . . . . . . . 128
7.4 Constructing Instantaneous Dynamic Equilibria . . . . . . . . . . . . . . . . . . . . . 130
7.5 Further Results on Instantaneous Dynamic Equilibria . . . . . . . . . . . . . . . . . . 133

8 Future Research and Conclusion 137
8.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 141





Introduction 1
Climate change is inevitable. Right now humanity is facing the biggest crisis since the end of the
cold war. Every year we produce over 35 gigatons of carbon dioxide (CO2) and more than 15
gigatons of other atmospheric greenhouse gases, such as methane (CH4), nitrous oxide (N2O) and
tropospheric ozone (O3) [13, 79]. If these anthropogenic emissions persist during the next decades
the global temperature will rise between 2.6 °C and 4.8 °C by 2100 causing a rise of the sea level
by an estimated 45 to 82 cm [14]. Besides, the Intergovernmental Panel on Climate Change (IPCC)
reported the possible consequences on our planet in 2014: Extreme weather with storms, floods and
droughts will cause water scarcity, crop losses and mass damage to the biodiversity, just to name
some examples [12].
Even though the scientific world agrees that anthropogenic activities will inevitably lead to climate
change [102], the IPCC recommends to maintain the greenhouse gases below a limit of 450 ppm
(parts per million) in order to avoid an increase of more than 2 °C in global temperature [13].
This can only be achieved by starting to reduce the emissions of atmospheric greenhouse gases
immediately.
Hereby, the transportation sector is the second biggest primary source of greenhouse gases, right after
electricity and heat. This sector alone is responsible for nearly half of the fossil fuel consumptions
and an estimated 15% of the global anthropogenic greenhouse emissions [13].
Fortunately, there are several promising technologies and concepts on the horizon that could reduce
the emissions significantly. Firstly, and most importantly, changing car engines from combustion fossil
fuel to electronic power [15]. This would reduce the emission greatly under the assumption that the
energy sector also heavily invests into renewable energies and reduces the usage of fossil energy
drastically. Secondly, reducing the individual traffic volume should be one of the primary goals.
Even though the global population and with it the transportation demand is growing exponentially,
concepts like pooling (sharing a car for a ride with other travelers) [95] or car sharing [88] are
promising concepts as the production of cars is very CO2 costly.
Finally, one of the major goals should be to design the infrastructure such that congestion is
minimized, or in other words, the traffic volume should be controlled to be distributed best possible
within the road network. Studies have shown [4, 90] that traffic in high congested networks produces
approximately 50% more carbon-dioxide and other exhaust gases per vehicle and kilometer than
in non-congested networks. Additionally, high congested roads cause air pollution by emitting
carbon monoxide, volatile organic compounds, hydrocarbons, nitrogen oxides, particulate matter
and other pollutants [27]. As high congestions mainly occur in metropolitan areas this has a huge
negative effect on the traffic users and residents, and it has been shown that the morbidity rate
for respiratory and cardiovascular diseases, cancer and adverse pregnancy is increased in such
areas [59]. Additionally, highly congested roads also mean longer travel times and higher stress
levels of commuters and other traffic users.
In conclusion, it is in society’s best interest to minimize congestion, especially in metropolitan areas,
in order to decrease greenhouse gas emissions and increase health and welfare.
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Understanding traffic. In order to achieve these goals science has to take the first step and develop
concepts and ideas on how to improve the infrastructure and reduce traffic congestions. But this
is a challenging task as traffic dynamics are hard to predict and changes in the network can have
surprising unintentional effects. For example the congestion in a network can increase when a new
road is added or a bottle-neck road is enlarged even though the demand and total traffic volume
has not changed. This famous effect is known as Braess Paradox [8, 9, 74] and was reported for
example in Stuttgart in 1969 [52]. The reverse effect, i.e., a closure of a road that improves the traffic
situation, was observed in New York (1990) [57] and Seoul (2005) [97]. Hence, it is important
to understand the complicated interplay of traffic users and to predict it as best as possible before
applying costly and sometimes irreversible changes to the infrastructure.
This is exactly the part where mathematics and this thesis come into play. In order to understand
the traffic dynamics mathematicians need to formulate a strong traffic model, in which, on the one
hand, it is possible to provide provable statements and predictions and which, on the other hand,
represents real-world traffic in the best possible way.
Of course, different aspects of traffic have been considered from the mathematical perspective for a
long time and there are several different approaches for modeling traffic [22, 23, 66, 69, 100]. But
most of them are either too simplified, leading to large discrepancy to real-world traffic, or they are
too complicated to prove any results for larger networks. Only in recent years there was a significant
scientific improvement by combining the main concepts of previous static models with a continuous
time approach [54].
In almost every case the traffic is modeled as a network flow on a graph and the traffic assignment
problem is to find a traffic flow, for which every part that corresponds to a traffic user is traveling on
a reasonable path from its origin to its destination. In simpler models time is not taken into account
but instead it is assumed that the flow represents the average traffic on a constant demand. On the
other side of the spectrum, we have models that aim to simulate the dynamics on each road segment
in great detail including acceleration, deceleration, reaction times and distances between vehicles.
In this thesis we consider a model that sits in the middle. It has a continuous time component in
order to represent the dynamic flow evolution, as some of the most interesting phenomena can only
be observed in over time models. But at the same time we stay on a macroscopic level and assume a
straightforward queuing model on each link, which does not take detailed vehicle dynamics into
account.
The overall goal of this thesis is to provide a complete overview of recent results on dynamic equilibria
in this model and to extend the flow dynamics by features, such as spillback, kinematic waves or
time-dependent capacities, to be as realistic as possible without losing the fundamental structure
and results of dynamic equilibria.
In order to precisely formulate this traffic model the combination of multiple different mathematical
disciplines is needed, each covering a different aspect. First of all, road networks are best represented
by directed graphs, which are part of discrete mathematics. Next, game theory is important as
we need to study the complex interplay of the single road users, which can all be seen as a huge
number of players striving for the shortest travel time on the same network. Furthermore, the traffic
simulation and congestion calculation form a dynamic system with continuous time, which requires
several aspects of functional analysis and measure theory. Finally, if we want to predict the traffic
behavior of larger instances, we need to implement an algorithm. It turns out that this can be done
with mixed integer programming, a powerful tool within the area of combinatorial optimization.
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1.1 Contribution and Overview
In this thesis we consider dynamic equilibria in a flow over time model with deterministic queuing,
which were introduced by Koch and Skutella in 2009 [54]. This model, in its base version, lacks
essential aspects of traffic. For example, each arc can store an unbounded amount of flow volume
and, more importantly, only a single commodity with one source and one sink is considered. In
other words, only scenarios where all agents share the same origin and the same destination can be
modeled. As this is highly unrealistic for a real-world scenario, the goal of this thesis is to improve
the base model by adding features, like spatial queues with kinematic waves that can cause spillback,
or by allowing the network properties to change over time. We intensively study a multi-commodity
version of this model and show the existence and some structural results of dynamic equilibria.
Additionally, we consider a different equilibrium notation, where every agent adaptively chooses a
fastest route to the destination based on the information that can be observed at the current time.
Overall, the main contribution of this thesis is to greatly reduce the gap between mathematical
Nash flows over time and complex large-scale simulation tools, such as MATSim [46], which only
determine user equilibria heuristically without provable quality but which are used to predict traffic
in real-world scenarios due to their large range of features.

Overview. First, we will present the state of the art and related work on this topic in the mathe-
matics, computer science and traffic science communities in the next section.

Right after this, we are going to present all fundamental mathematical definitions, theorems and
further preliminaries that are needed throughout this thesis in Chapter 2. This includes graph
and game theory, an introduction into the Lebesgue measure and a brief overview of variational
inequalities. We also consider basic structures of classical static flows as well as several optimization
problems of flows over time.

The first chapter on Nash flows over time, Chapter 3, is dedicated to the base model as it was
introduced by Koch and Skutella. Note that we changed some of the notation in order to make it
consistent with the feature extensions in later chapters. In addition to the central results, i.e., that
Nash flows over time can be constructed via a sequence of thin flows with resetting, we also provide
a short overview of recent results about the long-term behavior and the price of anarchy in this
model.

In Chapter 4 we consider flows over time in time-dependent networks. In other words, the
capacities and the transit times (here given indirectly by speed limits) of the road network can
change during the evolution of the traffic flow. If these changes are known information in advance
and the traffic users, represented by flow particles, can anticipate them, then it is possible to construct
a dynamic equilibrium. The key step is to show how to incorporate the time-dependent capacities
and speed limits into the thin flow definition. This way we can prove that all main results of the base
model also hold for this extension and that Nash flows over time can, again, be constructed by a
sequence of these extended thin flows.

The biggest drawback of the base model is that we can only consider a single-commodity, i.e., only
networks with a single source and a single sink, which corresponds to a dynamic traffic assignment
problem, where each road user starts from the same origin and everyone has the same destination. To
attack this flaw, we consider multi-commodity flows over time in Chapter 5, where each commodity
has its own origin-destination pair. Even though we lose a lot of structure and some of the main
results of the base model in this setting, we show that there still exist dynamic equilibria and that
they can still be characterized by some extended thin flow formulation. The key idea is to take
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all flow from the past and the future into consideration at once and to incorporate the flow of
other commodities, called foreign flow, into the thin flow definition. It is then possible to prove
that multi-commodity Nash flows over time correspond one-to-one to multi-commodity thin flows.
Finally, the existence of these thin flows can be shown by a reformulation to an infinite-dimensional
variational inequality and the existence theorem of Brézis. As an additional result we show that all
properties of the base model translate to the multi-commodity case, as long as all commodities either
share the same origin but have different destinations or have potentially different origins but share
the same destination.

Chapter 6 is dedicated to the most significant changes of the base model, namely spillback and
kinematic waves. In order to represent highly congested road networks it is important to support
these two crucial features. Spillback can be modeled by restricting the total amount of flow on an
arc by some storage capacity. Whenever an arc is full the inflow rate cannot exceed the outflow
rate any longer. In the words of traffic: if a road is full no new vehicle can enter the street before
another vehicle has left. If more flow aims to use a full arc, it has to queue up on a previous arc.
This is exactly the definition of spillback. In order to obtain a kinematic wave model, we introduce a
backwards moving flow over time on each arc representing the gaps between vehicles. Whenever
flow leaves an arc, it takes some time until these free spaces reach the tail, but only then, new flow
is allowed to enter if this arc was full. Additionally to the introduction of these new features to the
flow over time model, we show that essentially all results of the base model, especially the existence
of dynamic equilibria, transfer to this extended model. The key idea thereby is to extend the thin
flow definition by a so-called spillback factor for each node, which can be used to reduce the effective
outflow capacity of all incoming arcs, whenever there is an outgoing arc that is fully congested.
Unfortunately, most of the proof techniques used for the base model fail for these extensions. Hence,
even though most of the results are basically the same as for the base model, the proofs are much
more involved in this chapter.

Note that all these different extensions to the base model can also be combined in a straightforward
manner. But in order to keep things as simple as possible, we focus on only one extension to the
base model in each chapter.

We continue with a different equilibrium concept in Chapter 7. Here, we consider the same multi-
commodity flow over time model as given in Chapter 5 but now the particles, representing the road
users, are not allowed to anticipate the further evolution of the flow, but instead, they consider
only the current state of the network in order to decide on a route to their destination. In these
instantaneous dynamic equilibria, or IDE flows for short, each particle can reevaluate its route
choice at every node and adapt its path if necessary. The advantages and disadvantages of this
concept compared to Nash flows over time are discussed in-depth and even though these flows
over time have completely different structures, we can still use the general thin flow framework to
compute them. In fact, the existence of multi-commodity IDE flows can be shown with techniques
very similar to the ones used for proving the existence of single-commodity Nash flows over time.

Finally, in Chapter 8 we give a brief summary of the results and discuss further research as well as
several open problems related to Nash flows over time.

How to read this thesis. The goal of this thesis is that everyone with a basic understanding of
mathematical notation should in principle be able to comprehend all results and proofs presented
here. Furthermore, all lemmas and theorems that are either a central result on their own or that are
necessary later on, are proven rigorously, with the exception of a few theorems in the preliminaries,
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for which the proofs are beyond the scope of this thesis. In these cases we refer to an article or text
book, where the respective proof can be found.
Each of the Chapters 4 to 6, which focus on a special extension aspect, are completely independent
of each other and only refer to the base model. In other words, it is possible to read only Chapter 3
and then one of the Chapters 4 to 6. To understand Chapter 7 about IDE flows it is helpful to read
the introduction of the multi-commodity flow over time model in Section 5.1.1.
Note that the fundamental philosophy of this thesis is to keep everything as simple and comprehensi-
ble as possible, without losing any mathematical precision or correctness. Surely, the proofs will also
include some unpleasant technicalities and calculations that are unavoidable. But we aim to always
convey the intuitive idea behind all concepts and proofs. In order to keep the reading flow as fluid
as possible we move some of the especially technical and strenuous proofs to the appendix of the
corresponding chapter and replace them by intuitive presentations of the key ideas.

1.2 Related work
Dynamic traffic assignment. Network loading models in time-dependent networks have been stud-
ied intensively within the traffic science community and the several different approaches can be
classified into three categories depending on their level of detail. On the macroscopic level, traffic is
modeled by a flow representing a collection of vehicles. Some of the pioneer work in this regard
is due to Vickrey with his single link-load model [96] and to Mechant and Nemhauser with an
exit-function-based flow model [67]. Recently, more advanced approaches like the Colombo phase
transition model [6, 16] or the macroscopic node model [31, 92] have become popular. In contrast
to this, microscopic traffic flow models consider each vehicle individually and track not only the
position, speed and acceleration of each car, but they also simulate maneuvers, like lane changes and
overtaking. Some of them even consider different driver behavior, such as gap-acceptance, reaction
times and more. For further details on this kind of models we refer to the comprehensive surveys
of Algers et al. [1] and Olstam and Tapani [70]. Finally, mesoscopic models are in between these
two. Some aspects, such as the traffic dynamics, are considered at a low level of detail (macroscopic)
whereas other aspects, such as the agent behavior and the route choice for each traffic user, are
considered individually (microscopic). This gives a trade-off between accuracy and computational
complexity. Examples of such models are DynaSMART [47] and the multi-agent transport simulation
(MATSim) [46]. For a more detailed overview of different dynamic traffic assignment models we
refer to the book of Ran and Boyce [73] and the survey article of Wang et al. [98].

Flows over time. Classical network flows, or static flows as we call them in this thesis, have been
studied from a mathematical perspective since the middle of the last century. Ford and Fulkerson did
a lot of pioneer work on these structures and they also were the first to introduce dynamic flows,
also called flows over time, back in 1958 [32, 33]. In a flow over time, every flow particle travels
over time through a network, and therefore, it is an excellent basis for a traffic model. Considering
a network with a single source and a single sink as well as a capacity and a transit time for each
arc, Ford and Fulkerson showed how to efficiently construct a maximum flow over time for some
given time horizon. Hereby, a maximum flow over time is a flow over time that sends as much flow
volume as possible from the source to the sink within the time horizon. Their algorithm is based
on a static min-cost flow computation in the given network, where arc transit times are interpreted
as costs. The resulting static flow corresponds to the flow rates of a maximum flow over time that
needs to be sent into the network and along the paths as long as possible.
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Closely related to the maximum flow over time problem is the quickest flow problem. Here, a
specific amount of flow volume is given and the task is to send all of it as quickly as possible to the
sink. This can be solved efficiently by using Ford’s and Fulkerson’s algorithm in combination with a
binary search framework [29], which can be improved to a strongly-polynomial running-time by
using parametric search [11].
Surprisingly, it is possible, at least for the single-source single-sink setting, to compute a flow over
time that is maximal for all time horizons simultaneously, and that is, therefore, also a quickest
flow for all given flow volumes at once. Such special flows are called earliest arrival flows and
their existence was already shown by Gale in 1959 [35]. Minieka showed in 1973 that they can be
computed by using the successive shortest path algorithm, where it is also allowed to send negative
flow backwards in time in the opposite direction of an arc [68]. Unfortunately, this might take an
exponential number of iterations in general, which was shown by Zadeh [101]. Just as for all other
flow over time concepts, earliest arrival flows were first considered in a discrete time model and,
only in 1990, Philpott [72] showed their existence in the continuous time model. Eight years later
Fleischer and Tardos [29] also extended the earliest arrival algorithm to the continuous time setting.
When considering networks with several sinks, it is possible that there does not exist an earliest
arrival flow anymore [30]. In fact, it is NP-hard to decide whether such a flow exists or not in these
networks [84]. A formal definition of all of these flow over time problems is given in Section 2.7 on
page 24.
It turns out that the transshipment over time problem of balancing given supplies and demands on
different nodes of a network by sending flow within a time horizon is considerably more difficult
to solve than the corresponding problem for static flows. Only in 2000, Hoppe and Tardos [45]
presented an efficient algorithm for solving the transshipment over time problem; see also Hoppe’s
PhD thesis [44]. However, their algorithm uses parametric submodular function minimization, which
is theoretically efficient but leads to unrealistic running times for reasonably large networks in
practice. Only quite recently, Schlöter and Skutella [83] presented an improvement of this result;
see also Schlöter’s PhD thesis [82].
As dynamic flow models were often considered in a discrete time model, a classical approach to solve
flow over time problems is to reduce them to a static flow problem by considering the time-expanded
network. The original network is for this purpose copied for every time step between zero and the
time horizon, and for each original arc the tail-node in each copy is connected to the head-node
in the respective copy corresponding to a later point in time depending on the transit time. This
way, an optimal static flow in the expanded network corresponds to an optimal flow over time in the
original network. However, the size of the expanded network is exponential in the input size under
the natural assumption that the time horizon is encoded in binary. This construction was already
introduced by Ford and Fulkerson [32, 33] and it is used, for example, to prove that the minimum
cost flow over time problem, which is NP-hard in general [51], can be solved in pseudo-polynomial
time. Moreover, clever usage of the concept of time-expanded networks was utilized by Fleischer
and Skutella to show the existence of fully polynomial-time approximation schemes for several
NP-hard flow over time problems [28]. Another clear evidence that flow over time problems are
more complex than static flow problems is the fact that the computation of multi-commodity flows
over time is NP-hard [38]. For a recent introductory survey into the whole field of flows over time we
refer to the publication of Skutella [89]. Furthermore, the survey of Köhler, Möhring and Skutella
gives an overview of flow over time models in the context of traffic networks [56].

Nash flows over time. All flow over time problems discussed so far are based on the assumption
that the total flow is controlled by a central authority, which decides on the route and departure time
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of each single particle. In real-world traffic situations, however, each traffic user acts independently
and selfishly, and therefore, we have a lack of coordination. To capture this behavior, we assume
that each flow particle is an individual agent that wants to reach its destination as early as possible,
and hence, we consider flows over time from a game-theoretical perspective. In this thesis we
study dynamic equilibria, which are states where no particle can reach the destination earlier by
unilaterally changing its route. Hereby, the arc dynamics are described by the deterministic queuing
model, which was first mentioned by Vickrey in 1969 [96] and studied by Hendrickson and Kocur
in 1981 [41]. It is also at the core of large-scale agent-based traffic simulations, such as MATSim
developed by Horni, Nagel, Axhausen [46] and others. Here, the travel time of a flow particle
entering an arc consists of a constant transit time and a waiting time due to a queue that builds up
in front of a bottle-neck whenever the flow rate exceeds the arc’s capacity. The queues, and therefore
the arc dynamics, thereby follow the first-in-first-out (FIFO) principle. For a detailed definition we
refer to Section 3.2.
In 2009, Koch and Skutella characterized the structure of dynamic equilibria in a single-source single-
sink network from a strictly mathematical point of view [54]; see also Koch’s PhD thesis [53]. As the
most essential structural insight, they prove that these equilibrium flows, called Nash flows over
time, consist of a number of phases, in which all flow entering the network chooses the same routes
from the source to the sink. Each phase is, thereby, characterized by the strategy of the particles in
form of static flows featuring specific properties, which they call thin flows with resetting. Based
on this key observation, Cominetti, Correa and Larré showed existence and uniqueness of these thin
flows with resetting [18], and thus proved the existence of Nash flows over time. They extended this
existence result in 2015 to networks with general inflow rate functions and also to a multi-commodity
setting [17], which we will discuss in Chapter 5. Moreover, Macko, Larson and Steskal showed the
existence of the Braess Paradox in this model [65], and Cominetti, Correa and Olver examined the
long-term behavior of queues and were able to bound their lengths whenever the network capacity
is sufficiently large [19]. Nash flows over time in the deterministic queuing model are the central
mathematical object considered in this thesis. More details on most of these results and a formal
introduction to the model can be found in Chapter 3.

Price of anarchy. The price of anarchy is a concept in game theory to measure the total loss in a
game due to the selfish behavior of the players. It is defined as the ratio of the total cost of the worst
Nash equilibrium and the total cost in the optimal (cooperative) scenario. This concept was first
considered by Dubey and Jonathan [25] and transferred to static routing games by Roughgarden
and Tardos [77, 75]; see also the publication of Koutsoupias and Papadimitriou [58]. One possibility
to apply this concept to the flow over time model is to measure the increase of the arrival time of
a particle in a Nash flow over time compared to the arrival time of the same particle in an earliest
arrival flow. Bhaskar, Fleischer and Anshelevich showed that this ratio can be bounded by e

e−1 under
some very specific conditions on the network [5]. Only very recently, Correa, Cristi and Oosterwijk
reduced these preconditions significantly [20]. But the conjecture, that the price of anarchy is e

e−1 in
general, remains open. More on this topic can be found in Section 2.3 on page 14 for static flows
and in Section 3.6.3 on page 41 for flows over time in the base model.

Wardrop equilibria. User equilibria have also been studied for a long time in static networks and
they are referred to as Wardrop equilibria [99]. As they lack the time component, they can be
thought of as a steady state after an initial evolution when considering a constant incoming traffic
rate [61]. Here, the network is considered to have monotonically increasing cost functions that
map the load of each arc, i.e., the amount of flow using this arc, to the traversing time every traffic
user experiences by using this arc. Then, the Wardrop equilibrium simply is a static flow where
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each arc that is used by a positive amount of flow lies on a path from the origin to the destination
with minimal cost (a formal definition can be found in Section 2.3 on page 14). These flows always
exist [2] and are unique whenever the cost functions are strictly increasing [91]. Under some mild
conditions on the cost functions they can be computed efficiently via convex optimization [2, 23].
Just recently, Klimm and Warode showed that it is even possible to compute all Wardrop equilibria
for a fixed network with piece-wise linear cost functions for all possible demands [50]. Roughgarden
studied the price of anarchy in this model and showed that it only depends on the class of cost
functions and not on the network topology [76]. Together with Tardos he showed that the price of
anarchy is 4/3 for linear cost functions [77]. For more details on this topic we refer to the survey of
Correa and Stier-Moses [21].

Packet routing. In all the approaches presented above we model traffic by a flow over time or
a static flow that can be split in arbitrarily small particles, which makes sense when considering
traffic from a microscopic point of view. But there is another class of mathematical routing models
that considers each vehicle separately. This perspective became popular since Leighton, Maggs and
Rao [62] studied optimization problems in such packet routing models. Combining these with
game theory leads to so-called competitive packet routing models, or routing games with atomic
players, where discrete packets (corresponding to the vehicles or players) want to move over time
as fast as possible through the network to their destinations. Whenever the number of packets using
an arc exceeds the arc’s capacity, some of the players have to wait, building up congestion. These
models are widely studied and there are different aspects that can be altered. For example, Hoefer et
al. and Kulkarni et al. study versions with continuous time [43, 60], whereas Harks et al. consider
discrete time steps [40]. A model where each player controls multiple packets at the same time was
recently introduced by Peis et al. [71] and a competitive packet routing model, which is very similar
to a discrete version of Nash flows over time, is studied by Scarsini et al. [81].
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Preliminaries 2
In this chapter we give a formal introduction of all mathematical objects and concepts required
throughout this thesis. We start with the basics for graphs, networks and static flows in Sections 2.1
and 2.2 and continue with the fundamental definitions for game theory and a brief introduction
into Wardrop equilibria and the price of anarchy in Section 2.3. Integrable functions are essential
for flows over time and they are introduced together with the basics of differentiation and measure
theory in Section 2.4. Advanced results of finite and infinite dimensional variational inequalities and
the fixed point theorem of Kakutani are presented in Section 2.5. They are required for proving the
existence of thin flows as well as the existence of Nash flows over time in a multi-commodity setting.
Section 2.6 is dedicated to a brief introduction into linear and integer programming, which we need
to characterize the long-term behavior of Nash flows over time and to compute thin flows. Finally,
we define flows over time in Section 2.7 and show some basic results about optimal flows over time
in order to set dynamic equilibria into context. At the very end of this chapter in Section 2.8 we give
an intuition of the notation we use throughout this thesis.

2.1 Graphs and Networks
Directed graphs. A directed graph, here also just called graph, G = (V, E) is given by a finite
node set V and an arc set E ⊆ V × V \ { (v, v) | v ∈ V } as it is depicted in Figure 2.1. Note that by
this definition, we do not allow graphs to have any parallel arcs or loops.
Each arc e = (u, v) ∈ E is imagined as a directed arrow pointing from u to v and, for the sake of
better readability, it is denoted by uv. We call u the tail and v the head of arc e and in rare occasions
we write tail(e) for u and head(e) for v. The sets of all incoming and outgoing arcs of a node v are
denoted by

δ−
v := { e ∈ E | head(e) = v } and δ+

v := { e ∈ E | tail(e) = v } .

For a subset of nodes W ⊆ V we write

δ−
W := { e = uv ∈ E | u /∈ W, v ∈ W } and δ+

W := { e = uv ∈ E | u ∈ W, v /∈ W } .

The in-degree and out-degree are given by |δ−
v | and |δ+

v | and the (total) degree by |δ−
v | + |δ+

v |.

Paths and Cycles. Given a directed graph G = (V, E) a finite sequence of arcs (e1, e2, . . . , em) is
called a path of length m if head(ei) = tail(ei+1) for i = 1, 2, . . . , m − 1. Paths can also be denoted
by the visited nodes, i.e., a sequence of nodes P = (v0, v1, . . . , vm) is a path of length m if vi−1vi ∈ E

for all i = 1, 2, . . . , m. Note that the empty sequence is a path of length 0. We say a node v is visited
by a path P if it occurs in the node representation of the path, in this case we also write v ∈ P .
Similarly, we say P contains an arc e if e occurs in the arc representation of P and we write e ∈ P .
A cycle of length m is a path C = (e1, e2, . . . , em) with head(em) = tail(e1), or equivalently, a path
C = (v0, v1, . . . , vm) with vm = v0. A graph is called acyclic if it does not contain any cycles. Note
that the empty sequence is explicitly not a cycle.
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v1

v3

v2

v5

v4

v6
e = uv

tail(e) head(e)

u v v

δ−v δ+v

Figure 2.1: On the left: a directed graph with six nodes and eight arcs. The node sequence (v1, v2, v3, v4) forms
a simple path and (v4, v5, v6, v4) is a simple cycle. The graph is weakly connected but not strongly
connected as, for example, v1 is not reachable by v2. In the middle: an arc e with tail u and head v.
On the right: A node v with incoming arcs δ−

v and outgoing arcs δ+
v .

We say a node u can reach a node v (or v is reachable by u) in G if there exists a u-v-path, i.e., a
path starting at u and ending at v. Furthermore, a graph G is (weakly) connected if for every pair of
nodes u, v ∈ V either v is reachable by u or u is reachable by v. If we have a graph G such that for
every pair of nodes u, v ∈ V it holds that u can reach v and v can reach u, we say that G is strongly
connected.
We call a path (v0, v1, . . . , vm) simple if none of the nodes are visited twice, in other words, if
|{ v0, v1, . . . , vm }| = m + 1. A cycle is called simple if no node is visited twice, except for the start
and end node, which of course need to be the same.

Networks. As networks we usually denote a directed graph together with some distinct nodes,
parameters on the arcs, and additional objects defining the setting. Note that the definition of a
network depends on the context. For flows over time a network often consists of a directed graph
G together with arc capacities νe > 0 and transit times τe ≥ 0 for all e ∈ E as well as two distinct
nodes s, t ∈ V and a network inflow rate r > 0. Hence, at least for the base model the network is
defined as the tuple (G, (νe)e∈E , (τe)e∈E , s, t, r). Later on some of these constants may get replaced
by functions (see time-dependent networks in Chapter 4) or expanded by additional parameters. For
the kinematic wave model, for example, we also have an inflow capacity, a storage capacity and a
gap transit time for each arc. For every model we clearly state the properties of the network at the
beginning of the corresponding chapter.

2.2 Static Flows
We will call the classical network flows static flows in this thesis in order to dissociate them from
dynamic flows (here called flows over time). Given a network consisting of a directed graph G with
source s and sink t, as well as a capacity νe > 0 on each arc, we call an vector x = (xe)e∈E of arc
flow values xe ≥ 0 a static flow if it satisfies flow conservation at each node v ∈ V \ { s, t }:∑

e∈δ−
v

xe =
∑

e∈δ+
v

xe.

The flow value |x| is hereby defined as the net flow leaving the source (or equivalently entering the
sink) and we require it to be non-negative:

|x| :=
∑

e∈δ+
s

xe −
∑

e∈δ−
s

xe =
∑

e∈δ−
t

xe −
∑

e∈δ+
t

xe ≥ 0.
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Furthermore, we call a static flow feasible if the flow on each arc does not exceed the capacity, i.e.,
if xe ≤ νe for all e ∈ E.

Path-based static flows. Instead of specifying a static flow by the flow value on each arc, it is also
possible to describe it path-based. For this let P be the set of all simple s-t-paths and C the set of all
simple cycles in the graph G. Note that both of these sets are finite since E is finite. We call a vector
(xP )P ∈P∪C with xP ≥ 0 also static flow with flow value

∑
P ∈P xP .

To convert a path-based static flow into an arc-based static flow we can simply determine the arc
loads in the following way:

xe :=
∑
P ∋e

xP .

Here the term “P ∋ e” denotes all simple paths and simple cycles that contain arc e.

Static flow decomposition. The inverse direction follows by the famous flow decomposition theorem:

Theorem 2.1.
Given an arc-based static flow x = (xe)e∈E it is possible to specify a path-based static flow
(yP )P ∈P∪C with

xe =
∑
P ∋e

yP .

Proof. The key idea is to start with the static flow x1 := x and to consider one path/cycle P ∈ P ∪ C
after the other. In each iteration we set yP to the minimal flow value of all arcs in P , i.e., yP :=
mine∈P x1

e. Afterwards, we reduce the flow of all e ∈ P by this value, while keeping the flow of all
other arcs as they were, i.e., x2

e := x1
e − yP for e ∈ P and x2

e := x1
e for e /∈ P .

We show that we end up with the empty static flow xk, meaning xk
e = 0 for all e ∈ E. Suppose there

is an e1 = v0v1 ∈ E with xk
e1

> 0. In the case of v1 ̸= t we find an arc e2 = v1v2 ∈ δ+
v1

with xk
e2

> 0
due to flow conservation. We can continue this argumentation until we have a node vm with vm = vj

for some j < m or we have vm = t. In the first case we found a simple cycle C = (vj , vj+1, . . . , vm)
with positive flow on each arc. This is a contradiction, as we would have reduced this flow when
considering C. In the second case, we can use the flow conservation to build a path backwards
starting at v0, where we will end up at the source s (or, again, have a simple cycle). Hence, if we end
up at s we found a simple s-t-path P with positive flow on each arc, which is again a contradiction
as we would have reduced this flow to 0 at some of these arcs when considering P . Since xk is the
empty static flow we have by construction that

0 = xk
e = xe −

∑
P ∋e

yP for all e ∈ E.

In the original statement of the flow decomposition theorem the number of paths P with yP > 0 is
bounded by |E| and a path-based formulation can be computed efficiently by iteratively constructing
paths for which the remaining flow value is strictly positive. Further details are omitted as these
statements are not needed in the thesis.
Note, however, that in an acyclic graph it holds true that for every static flow x with flow value |x|
we have xe ≤ |x| for all arcs e. This can easily be seen as we do not have any cycles in the path based
formulation, and therefore,

xe =
∑
P ∋e

xP ≤
∑
P ∈P

xP = |x| .
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Figure 2.2: After sending 5 flow units along the first s-t-path (top left) the Ford and Fulkerson algorithm
picks the next s-t-path in the residual network (bottom left). By sending 3 flow units along this
augmenting path (top right) the algorithm stops since t is not reachable by s in the corresponding
residual network (bottom right). The final static flow with flow value 8 is maximal as the min-cut
also has a value of 8.

Cuts. For a given network G = (V, E) with source s, sink t and arc-capacities νe we call the
outgoing arcs C = δ+

S of a set S ⊆ V \ { t } with s ∈ S an s-t-cut. An s-t-cut always separates the
source from the sink and every s-t-path has to use at least one arc of C. The capacity or value of an
s-t-cut C is defined by |C| :=

∑
e∈C νe.

Residual networks. Consider a feasible static s-t-flow x = (xe)e∈E in a network with graph G =
(V, E), source s, sink t and capacities (νe)e∈E . Without loss of generality we assume that for every
pair of nodes u, v ∈ V only arc uv or arc vu is contained in E but not both. In a general graph this
can be achieved by adding dummy nodes if necessary. The residual network for x is given by a
directed graph Ḡ = (V, Ē) with

Ē := { e | e ∈ E with xe < νe } ∪ { vu | uv ∈ E with xuv > 0 }

and capacities ν̄e := νe − xe and ν̄vu := xe for all e = uv ∈ E. Two examples of residual networks
are displayed on the bottom left and bottom right of Figure 2.2. The arcs e ∈ E ∩ Ē are called
forward arcs, whereas the arcs e with e ∈ Ē \ E are called backward arcs. Finally, the s-t-paths in
the residual network are called augmenting paths.

Optimal static flows. Given an s-t-network G = (V, E) with capacities (νe)e∈E such that t is reach-
able by s, the static maximum flow problem is to determine a feasible static s-t-flow of maximum
value. Such a maximum static flow can, for example, be constructed by the Ford and Fulkerson
algorithm by starting with the empty static flow and iteratively considering one augmenting path
after the other in the residual network; see Figure 2.2. By augmenting the static flow by the minimal
capacity along the considered path, meaning to increase the flow value on forward arcs and reducing
it on backwards arcs, we can increase the flow value of the static flow. This procedure can be
repeated until there is no augmenting path left in the residual network. By the well-known max-flow
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min-cut theorem, that states that the value of a maximum static s-t-flow equals the capacity of a
minimal s-t-cut, it can be shown that this is indeed a maximum static flow.
With a similar algorithm it is possible to determine a static min-cost flow in a network that, in
addition, has a cost ce ≥ 0 on each arc. The task is to determine a feasible static flow that is not
only a maximum flow but also has minimal cost, where the cost of the static flow x is given by∑

e∈E ce · xe. The successive shortest path algorithm works very similar to the algorithm of Ford
and Fulkerson but instead of considering the augmenting paths in arbitrary order, it always augments
a path of minimal cost, where the cost of each backwards arc vu is given by −cuv.

Static transshipments. A generalization of a static s-t-flow is a static transshipment. For a transship-
ment network we consider a directed graph G = (V, E) where every node v is equipped with a supply
or demand of bv ∈ R. A positive value means that v has a supply and a negative value corresponds
to a demand. We assume that the total supply equals the total demand, i.e.,

∑
v∈V bv = 0. We call

an arc vector (xe)e∈E with xe ≥ 0 a b-transshipment if∑
e∈δ+

v

xe −
∑

e∈δ−
v

xe = bv for all v ∈ V.

These transshipments often come together with a cost ce ≥ 0 on each arc and a typical task is to find
a transshipment of minimal cost

∑
e∈E xe · ce.

Again, a static transshipment can be represented by a path-based formulation, where we consider a
value for every simple path starting at some supply node and ending at a demand node together
with all directed cycles.
It follows immediately by the path-based representation of the b-transshipment that in all acyclic
graphs we have

xe =
∑
P ∋e

xP ≤
∑
P ∈P

xP =
∑

v∈V : bv>0
bv. (2.1)

This property of b-transshipment will be used in Chapter 6 for the kinematic wave model.

2.3 Game Theory
In this thesis we model the dynamic traffic assignment problem by a game where each traffic user is
a player trying to minimize his or her arrival time at the destination. The main focus will be on Nash
flows over time, which are the equilibria in this game. To provide a good intuition of this concept
we will give a short introduction into games with a finite number of players, which will later be
translated into dynamic games with a continuum of players.

Games. In mathematical game theory a game consists of a set of players N , a set of strategies Xi

for each player i ∈ N as well as a payoff-function

P : X → RN , where X := ×
i∈N

Xi.

For a given strategy profile x = (xi)i∈N ∈ X we call Pi(x) the payoff of player i. The goal of each
player is to maximize his or her own payoff.
For a given strategy profile x ∈ X and a player j ∈ N we use the following unintuitive, but very
useful, notation and write x−j for the strategy vector (xi)i∈N\{ j } and for a strategy y ∈ Xj we write
(x−j , y) for the strategy profile that is obtained by replacing xj by y in x.
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Nash equilibria. The most important objects in game theory are equilibria, strategy profiles in a
stable state, which means that no player can increase his or her payoff by changing his or her strategy.
More precisely, we call a strategy profile x a Nash equilibrium if

Pi(x) ≥ max
y∈Xi

Pi((x−i, y)) for all i ∈ N.

We denote the set of strategy profiles that forms a Nash equilibrium by NE.

Static network games. To give an example of a game with infinite many players we want to consider
the static traffic assignment problem. The key idea is, that each road is modeled by an arc equipped
with a cost function, which describes the delay for each traffic user on that road dependent on the
amount of traffic using it. Note that this is a static game as we do not consider any time component.
More formally, we consider a network consisting of a directed graph G = (V, E) with a source s, a
sink t as well as monotonically increasing cost functions ce := [0, ∞) → [0, ∞). For some a > 0 let
N := [0, a] be a set of uncountably many players. The strategy space X is identical for each player
and consists of all simple s-t-paths, i.e., X := P. A strategy profile is given by a function f : N → P
mapping each player to its chosen route. For technical reasons we have to restrict the set of valid
strategy profiles and require that this mapping is measurable (see Section 2.4.1). In other words,
the sets NP := { i ∈ N | f(i) = P } have well-defined measures for all P ∈ P. This way, each valid
strategy profile corresponds to a static s-t-flow x of value a, which is obtained by setting xP to the
measure of NP . The payoff in this game will be represented by a cost function ci for each player i

(corresponding to his or her travel time), which he or she tries to minimize. For a given static flow x

the cost of a path P is given by cP (x) :=
∑

e∈P ce(xe) and the cost of a player i ∈ N equals the cost
of the chosen path.

Wardrop equilibria. The corresponding static flows of Nash equilibria in this type of games are called
Wardrop equilibria, as they were first considered by Wardrop in 1952 [99]. The Nash condition
translates to the following defining condition of Wardrop equilibria:

cP (x) ≤ min
Q∈P

cQ(x) for all P ∈ P with xP > 0.

Clearly, this condition guarantees that every path that is used by a positive measure of players is a
fastest s-t-path when interpreting the costs as delay. In other words, no player has the incentive to
choose a different route. An example of a Wardrop equilibrium is depicted in Figure 2.3. As a central
result, it has been shown that these Wardrop equilibria always exist and, in the case that all cost
functions are strictly increasing, that they are unique [2].

Price of anarchy and price of stability. The price of anarchy is a concept to measure the loss of
total payoff when every player acts selfishly compared to the total payoff if all players cooperate.
More precisely, it is the quotient of the sum of all payoffs in an optimal (cooperative) state and the
sum of all payoffs in the worst Nash equilibrium

PoA :=
maxx∈X

∑
i∈N Pi(x)

minx∈NE
∑

i∈N Pi(x) ≥ 1.

If, instead of payoffs, we consider costs that the players try to minimize, the price of anarchy is
instead defined by

PoA :=
maxx∈NE

∑
i∈N Pi(x)

minx∈X

∑
i∈N Pi(x) ≥ 1.
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Figure 2.3: Static traffic assignment in a network, where the first and last arc on the middle path have a cost
function of ce(x) = x and all other costs are constant 1 or 0. On the left: The Wardrop equilibrium,
where both flow units take the middle path with cost of 4 giving a total cost of 8. As all other paths
also have a total cost of 4 there is no incentive for flow particles to deviate. On the right: The
optimal static flow. Here one flow unit takes the top and one unit the bottom path. The total cost
is therefore 6. Hence, since the Wardrop equilibrium is unique, the price of anarchy and stability
in this network is 8/6. Note that removing the middle arc with cost 0 would force the Wardrop
equilibrium to be optimal. This Braess Paradox is the reason why this specific network is called
Braess network.

If we consider a class of games, for example, all static traffic assignment problems with affine linear
cost functions, the price of anarchy of the class is defined as the supremum of the prices of anarchy
of all instances.
A related concept is the price of stability. Here, we compare the optimal value to the best Nash
equilibrium instead of the worst. In other words, we suppose that an authority can force every
player to choose a specific strategy but the outcome will only persist if no player has the incentive to
change his or her strategy. Then the price of stability is a measure of efficiency for these stable states
compared to the optimum. Hence, it is defined as

PoS :=
maxx∈X

∑
i∈N Pi(x)

maxx∈NE
∑

i∈N Pi(x) ≥ 1

or, if we have a minimizing game, as

PoS :=
minx∈NE

∑
i∈N Pi(x)

minx∈X

∑
i∈N Pi(x) ≥ 1.

The price of anarchy for static traffic assignment games has been extensively studied by Roughgarden
and others [77, 76, 75] for different classes of cost functions. For affine linear functions and arbitrary
networks the price of anarchy is, for example, 4/3 [77]. Hence, the example given in Figure 2.3 is a
worst-case instance.

2.4 Functions
As we consider dynamic traffic assignment problems the traffic flow changes over time, which is
modeled by functions that specify the flow rates at any given point in time. In this section we want
to briefly recall the most important properties of functions on the reals.

Basic properties. Consider a function f : D → R with a domain D ⊆ R. We call f bounded if
there exists a bound B ∈ R with |f(θ)| ≤ B for all θ ∈ D and f is called right-constant if for every
θ0 ∈ D there exists an ε > 0 with f(θ0) = f(θ) for all θ ∈ [θ0, θ0 + ε] ∩ D. Furthermore, we call f

(monotonically) increasing if f(θ1) ≤ f(θ2) for all θ1 < θ2 and (monotonically) decreasing if
f(θ1) ≥ f(θ2) for all θ1 < θ2 with θ1, θ2 ∈ D. It is strictly increasing (or strictly decreasing) if the
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corresponding inequality is strict. The function f is continuous at a point θ0 ∈ D if for every ε > 0
there exists a δ > 0 with

|fe(θ0) − fe(θ)| < ε for all θ ∈ [θ0 − δ, θ0 + δ] ∩ D.

A function f is called continuous if it is continuous at all points in D and it is called L-Lipschitz
continuous if there exists a constant L ≥ 0 such that

|fe(θ1) − fe(θ2)| ≤ L · |θ1 − θ2| for all θ1, θ2 ∈ D.

One of the most important properties of continuous functions is described by the following well-
known theorem:

Theorem 2.2 (Intermediate value theorem).
Considering a continuous function f : I → R defined on a closed interval I := [a, b] ⊆ R, for every
value λ ∈ [f(a), f(b)] there exists a ξ ∈ [a, b] with f(ξ) = λ.

A proof for this theorem can be found in most text books about basic calculus, for example in the
book by Royden and Fitzpatrick [78].

Differentiation. Suppose that the domain D is an open set. Then f is called right-differentiable at
θ0 ∈ D if the following limit, called right-derivative, exists:

lim
θ ↘ θ0

f(θ0) − f(θ)
θ0 − θ

.

Here, θ ↘ θ0 means that θ goes to θ0 while always staying strictly larger, i.e., θ → θ0 with θ > θ0.
Analogously, we call f left-differentiable at θ0 ∈ D if the following left-derivative exists:

lim
θ ↗ θ0

f(θ0) − f(θ)
θ0 − θ

.

If f is both right- and left-differentiable at θ0 ∈ D and the left and right derivative are equal, we call
f differentiable at θ0. In this case the derivative value is denoted by df

dθ (θ0) or by f ′(θ0). Finally, f

is called differentiable if it is differentiable at all θ0 ∈ D. All derivative values together form the
derivative function denoted by df

dθ or simply f ′.
One of the most important tools for determining derivatives is the chain rule, which states that for
two differentiable functions f, g : R → R we have

(f ◦ g)′(θ) = f ′(g(θ)) · g′(θ) for all θ ∈ R.

2.4.1 Measure Theory
In order to properly define integrals we will briefly recall the definition of the Lebesgue-measure on
R. A proper introduction on this topic can be found in every measure or real analysis text book, for
example [7, 78, 80].

Borel σ-algebra and Lebesgue-Borel-measure. Let E := { (a, b) ⊆ R | a ≤ b } be the set of all open
intervals, then the Borel σ-algebra σ(E) is defined to be the smallest set of subsets in R with

(i) E ⊆ σ(E),

(ii) A, B ∈ σ(E) ⇒ A \ B ∈ σ(E),

16 Chapter 2 Preliminaries



(iii) An ∈ σ(E) for n ∈ N ⇒
⋃

n∈N An ∈ σ(E).

The uniquely defined function µ : σ(E) → [0, ∞] with

(i) µ((a, b)) := b − a,

(ii) µ(A \ B) := µ(A) − µ(B) for all A, B ∈ σ(E) with B ⊆ A,

(iii) µ
(⋃

n∈N An

)
:=
∑

n∈N µ(An) for all pair-wise disjoint sequences (An)n∈N in σ(E),

is called Lebesgue-Borel-measure.

Null sets and Lebesgue-measure. The null sets for the Lebesgue-measure are defined as

N := { N ⊆ A | A ∈ σ(E) with µ(A) = 0 } .

Note that every singleton, and in consequence, every countable set is a null set. But there also exist
examples of uncountable null sets. Importantly, a countable union of null sets is, again, a null set. As
an extension we add all null sets to the σ-algebra and define the extended measure accordingly:

L := { A ∪ N | A ∈ σ(E) and N ∈ N } and λ(A ∪ N) := µ(A) for all A ∈ σ(E) and N ∈ N .

This measure λ is called Lebesgue-measure and the sets in L are called measurable. Note that all
sets A \ N with A ∈ σ(E) and N ∈ N are also contained in L. From now on this will be the only
measure to consider.

“Almost all”. We often want to make statements S about the elements of a subset A ⊆ R that only
hold up to some null set. Hence, a statement S holds for almost all θ ∈ A if there exists a null set
N ∈ N such that S holds for all θ ∈ A \ N . One of the most important statements is that a function
f := D → R is almost everywhere differentiable, which means that there exists a null set N ∈ N
such that f is differentiable at all θ ∈ D \ N . In particular, the function is allowed to have many
“kinks” or even “jumps” in its function graph as long as their positions form a null set.
The following lemma is a further example for this and it plays an important role later on.

Lemma 2.3 (Differentiation rule for a minimum). For every element e of a finite set E let Te : R≥0 → R
be a function that is differentiable almost everywhere and let ℓ(θ) := mine∈E Te(θ) for all θ ≥ 0. It holds
that ℓ is almost everywhere differentiable with

ℓ′(θ) = min
e∈E′

θ

T ′
e(θ) (2.2)

for almost all θ ≥ 0 where E′
θ := { e ∈ E | ℓ(θ) = Te(θ) }.

Proof. Let ϕ ≥ 0 such that all Te, for all e ∈ E, are differentiable, which is almost everywhere.
Since all functions Te are continuous at ϕ we have for sufficiently small ε > 0 that ℓ(ϕ + ξ) =
mine∈E′

ϕ
Te(ϕ + ξ) for all ξ ∈ [ϕ, ϕ + ε]. It follows that

lim
ξ ↘ 0

ℓ(ϕ + ξ) − ℓ(ϕ)
ξ

= lim
ξ ↘ 0

min
e∈E′

ϕ

Te(ϕ + ξ) − ℓ(ϕ)
ξ

= min
e∈E′

ϕ

lim
ξ ↘ 0

Te(ϕ + ξ) − Te(ϕ)
ξ

= min
e∈E′

ϕ

T ′
e(ϕ).

Note that every point ϕ where all Te are differentiable, but for which the left derivative of ℓ does not
coincide with the right derivative of ℓ, is a proper crossing of at least two Te functions. Therefore,
these points are isolated and form a null set. Hence, we have ℓ′(ϕ) = mine∈E′

ϕ
T ′

e(ϕ) for almost
all ϕ ∈ R≥0.
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2.4.2 Integrals

Measurable functions. A function f : D → R for D ⊆ R is called (Lebesgue-)measurable if the set
{ θ ∈ D | f(θ) < c } is measurable for all c ∈ R.

Simple functions. For a finite sequence of pair-wise disjoint measurable sets A1, A2, . . . , An and
corresponding real numbers (a1, a2, . . . , an) we call the function f(θ) =

∑n
i=1 ai1Ai

(θ) a simple
function. Here, 1Ak

denotes the indicated function defined by 1Ai
(θ) = 1 if θ ∈ Ai and 1Ai

(θ) = 0
otherwise. We define the integral of a simple function f : R → R by∫

R
f(θ) dθ :=

n∑
i=1

ai · λ(Ai).

Lebesgue-integral. For a measurable non-negative function f : D → R we denote by L(f) the set
of all simple functions g with measurable Ai ⊆ D and g(θ) ≤ F (θ) for all θ ∈ Ai. With this we define
the integral by ∫

D

f(θ) dθ := sup
g∈L(f)

{ ∫
R

g(θ) dθ

}
.

Note that the integral can be ∞. To obtain the integral for an arbitrary measurable function
f : D → R we split it into the positive and the negative part, i.e., we define f+(θ) := max { f(θ), 0 }
and f−(θ) := max { −f(θ), 0 }. We call f quasi-integrable if at least one of the functions f+ or f−

has a finite integral and f is integrable if both, f+ and f−, have a finite integral. In either case we
define ∫

D

f(θ) dθ :=
∫

D

f+(θ) dθ −
∫

D

f−(θ) dθ.

Note that for quasi-integrable functions this value can be ∞ or −∞.
We call a measurable function f : D → R locally integrable if for every compact set X ⊆ D we have
that f · 1X is integrable. In this case we write for every finite interval [a, b]∫ b

a

f(θ) dθ :=
∫

D

f(θ) · 1[a,b](θ) dθ < ∞.

Since integrals are invariant on changes on null sets it does not matter for this notation whether the
interval is closed or open, as long as the closed interval is contained in D.

Integral function. Given a locally integrable function f : [0, ∞) → R we can define the integral
function F : [0, ∞) → R by

F (θ) :=
∫ θ

0
f(ξ) dξ.

The Lebesgue’s differentiation theorem, which can be seen as a generalization of the fundamental
theorem of calculus, states the following.

Theorem 2.4 (Lebesgue’s differentiation theorem).
Given a locally integrable function f : [0, ∞) → R, the integral function F is differentiable almost
everywhere on (0, ∞) and for its derivative it holds that for almost all θ ∈ (0, ∞) we have
F ′(θ) = f(θ).

A proof can be found in most text books about Lebesgue integrals, for example in [78, 80].
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f(θ) f(θ) F (θ)

θ θθ0θ0 θ1θ1

Figure 2.4: On the left: The integral of the function f equals the area beneath the function graph and is defined
by the supremum of the integral of all simple functions with lower or equal function values. In the
middle: The integral from 0 to θ0 of the function f is given by the value of the integral function F
at position θ0 (on the right). In return the function F is almost everywhere differentiable with a
derivative of f(θ1) at position θ1.

It follows immediately that if f is bounded by a bound L then F is L-Lipschitz continuous. Basic
calculation rules known for the Riemann integral, such as the integration by substitution, also hold
for Lebesgue integrals: ∫ ℓ(ϕ2)

ℓ(ϕ1)
f(θ) dθ =

∫ ϕ2

ϕ1

f(ℓ(ξ)) · ℓ′(ξ) dξ.

Finally, we have the following theorem about monotone functions.

Theorem 2.5 (Lebesgue’s theorem for the differentiability of monotone functions).
Every monotone function F : D → R is almost everywhere differentiable on D.

A proof for this theorem can be found, for example, in the text book by Royden and Fitzpatrick [78].

2.5 Variational Inequalities and a Fixed Point Theorem
A powerful tool to prove the existence of dynamic equilibria are variational inequalities, which can
be defined for finite dimensional vector spaces as well as for infinite dimensional function spaces. In
this section we only present the essential definitions and results that we need throughout this thesis.
For more details on this topic we refer to the book of Kinderlehrer and Stampaccia [49] and the
more recent textbook of Facchinei and Pang [26].

2.5.1 Finite-dimensional Variational Inequalities
For a natural number n, we consider a set X ⊆ Rn and a function Γ: X → Rn. The finite-
dimensional variational inequality problem VI(X, Γ) is the following.

Find x ∈ X such that (y − x)T · Γ(x) ≥ 0 for all y ∈ X. (VI)

From Brouwer’s fixed point theorem, we obtain that the set of solutions SOL(X, Γ) is non-empty
whenever X and Γ satisfy some conditions.

Theorem 2.6.
Let X ⊆ Rn be non-empty, compact and convex and let Γ: X → Rn be a continuous mapping.
Then SOL(X, Γ) is non-empty and compact.

For the proof we refer to [39].
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Nonlinear complementarity. If X is a box, i.e., X =×n

i=1[0, Mi] for some Mi > 0, i = 1, . . . , n, it
is easy to see that for a given solution x∗ ∈ SOL(X, Γ) the nonlinear complementarity property
holds for every i = 1, 2, . . . , n with x∗

i < Mi:

Γi(x∗) ≥ 0 and x∗
i · Γi(x∗) = 0. (NCP)

The left inequality follows immediately since for x∗
i < Mi we can choose y to be equal to x∗ with the

exception of yi := Mi. Hence, by (VI) we have that Γi(x∗) cannot be negative. The right equation
follows with the same argumentation. For x∗

i ∈ (0, Mi) we can choose y to be equal to x∗ except for
yi, which can either be smaller or greater than x∗

i . Hence, (VI) implies that Γi(x∗) must be 0 in this
case.

2.5.2 Variational Inequalities in Infinite-dimensional Function
Spaces.

We can transfer the concept of variational inequalities to infinite-dimensional Hilbert spaces as well,
which we will consider next.

Scalar products. Given a vector space V over R a scalar product is a mapping ⟨·, ·⟩ : V 2 → R that
is linear in both components and satisfies

(i) symmetry: ⟨v, w⟩ = ⟨w, v⟩ for all v, w ∈ V .

(ii) positive-definiteness: ⟨v, v⟩ ≥ 0 for all v ∈ V and ⟨v, v⟩ = 0 ⇔ v = 0.

Hilbert space L2. For this section we consider two functions f1, f2 : D → R to be equal if f1(θ) =
f2(θ) for almost all θ ∈ D. In other words, two functions are equal if they only differ on a null set.
More formally, that means that if we define f1 and f2 to be equivalent then we identify the functions
with their respective equivalent classes.
This way we can define the L2-space by

L2(D) :=
{

f : D → R
∣∣∣∣ ∫

D

(f(θ))2 dθ < ∞
}

.

Together with the scalar product

⟨f, g⟩ =
∫

D

f(ξ) · g(ξ) dξ

this forms an Hilbert space, which means that L2(D) together with the induced norm

∥f∥ :=
√

⟨f, f⟩

is a complete metric space, i.e., all Cauchy sequences have a limit in L2(D). Given a natural number
d we can consider the space of function-vectors

L2(D)d :=
{

(fi)d
i=1

∣∣ fi ∈ L2(D) for all i = 1, 2, . . . , d
}

,

which again form a Hilbert space together with the scalar product

⟨f, g⟩ =
d∑

i=1

∫
D

fi(ξ) · gi(ξ) dξ.
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We say a sequence fk ∈ L2(D)d converges weakly to f ∈ L2(D)d, if ⟨fk, g⟩ → ⟨f, g⟩ for all
g ∈ L2(D)d and, for a given subset X ⊆ L2(D)d, we call a mapping A : X → L2(D)d weak-strong
continuous at f ∈ X, if for every fk ∈ X that converges weakly to f , we have that A(fk) converges
to A(f) with respect to the induced L2(D)d-norm. Note that strong convergence implies weak
convergence but not the other way round. Hence, a weak-strong continuous mapping is always
(strong-strong)-continuous but not vice versa. As an important example we show that the integration
operator is weak-strong continuous.

Lemma 2.7. The integration operator f 7→ F with Fi(θ) :=
∫ θ

0 f(ξ) dξ is a weak-strong continuous
mapping L2(D)d → L2(D)d as long as D = [0, H] is a compact interval.

Proof. Consider a sequence of (fk)k∈N in L2(D)d that converges weakly to f , i.e., ⟨fk, g⟩ → ⟨f, g⟩
for all g ∈ L2(D)d. For every θ we consider the vector of functions gθ with gθ

i (ξ) = 1 for ξ = [0, θ]
and gθ

i (ξ) = 0 otherwise. We obtain that
∫

D
gθ

i (ξ) dξ = θ < ∞, and therefore, gθ ∈ L2(D)d. Hence,

F k
i (θ) =

∫
D

fk
i (ξ) · gθ

i (ξ) dξ →
∫

D

fi(ξ) · gθ
i (ξ) dξ = Fi(θ).

This shows that F k converges point-wise to F . In order to show the convergence in the L2-norm,
given an ε > 0, we consider a number kθ ∈ N for every θ ∈ D such that

∣∣F k
i (θ) − Fi(θ)

∣∣ ≤
√

ε

2 · H · d
for all i = 1, 2, . . . , d and k ≥ kθ.

Since for increasing N the measure of S := { θ ∈ D | kθ > N } converges to 0 we can choose N∗ ∈ N
such that

∫
S

∣∣F k
i (ξ) − Fi(ξ)

∣∣2 dξ ≤ ε
2·d for all N ≥ N∗. This way we obtain for all k ≥ N∗ that

∥∥F k − F
∥∥2

L2 =
d∑

i=1

∫
D

∣∣F k
i (ξ) − Fi(ξ)

∣∣2 dξ

≤
d∑

i=1

∫
S

∣∣F k
i (ξ) − Fi(ξ)

∣∣2 dξ +
d∑

i=1

∫
D\S

∣∣F k
i (ξ) − Fi(ξ)

∣∣2 dξ

≤
d∑

i=1

ε

2 · d
+

d∑
i=1

∫
D\S

ε

2 · H · d
dθ ≤ ε

2 + ε

2 = ε.

Hence, F k converges to F in L2(D)d.

Infinite-dimensional variational inequality. Given a subset X ⊆ L2(D)d and a mapping A : X →
L2(D)d, the variational inequality VI(X, A) is the following.

Find f ∈ X such that ⟨A(f), g − f⟩ ≥ 0 for all g ∈ X. (infVI)

Brézis [10, Theorem 24] specifies conditions to guarantee the existence of a solution (see also [94]).

Theorem 2.8.
Let X be a non-empty, closed, convex and bounded subset of L2(D)d. Let A : X → L2(D)d be
a weak-strong continuous mapping. Then, the variational inequality VI(X, A) has a solution
f∗ ∈ X.

This result will be important for proving the existence of multi-commodity Nash flows over time in
Section 5.1.4.
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2.5.3 Kakutani’s Fixed Point Theorem
Another important tool to show the existence of thin flows in later chapters is the fixed point theorem
by Kakutani from 1941; see [48].

Theorem 2.9 (Kakutani’s Fixed Point Theorem).
Let X be a compact, convex and non-empty subset of Rn and Γ: X → 2X , such that for every
x ∈ X the image Γ(x) is non-empty and convex. Suppose the set { (x, y) | y ∈ Γ(x) } is closed.
Then there exists a fixed point x∗ ∈ X of Γ, i.e., x∗ ∈ Γ(x∗).

For the proof we refer to the original publication of Kakutani [48].

2.6 Linear and Integer Programming
Linear and integer programming are very useful tools to describe combinatorial optimization prob-
lems and there exist powerful solvers to compute solutions in reasonable time. In this thesis we will
show how to utilize mixed integer programs (a combination of linear and integer programs) in order
to algorithmically construct Nash flows over time, or more precisely, the underlying static thin flows.

Linear programming. A linear program in its standard form is given by

max
x∈Rn

cTx

s.t. Ax = b,

x ≥ 0.

Here, c ∈ Rn is a cost vector, A ∈ Rm×n is the coefficient matrix and b ∈ Rm is the bound vector.
The conditions Ax = b and x ≥ 0 mean that the equality/inequality holds for every component of
these vectors. We call a point x ∈ Rn feasible if it satisfies Ax = b and x ≥ 0. A feasible point is a
optimal solution if it has the maximal objective value cTx of all feasible points. These optimization
problems can be solved very fast in practice, for example with the simplex method, and they can
also be solved theoretically efficient via the ellipsoid algorithm or interior point methods, which
will not be discussed in detail here. More important in regard of this thesis is the construction of a
dual program, which is again a linear program. For a primal linear program in standard form as
displayed above the dual program is given by

min
y∈Rm

bTy

s.t. ATy ≥ c.

For every of the m conditions in the primal we have a variable yi in the dual and vice versa. For
every pair of feasible points (x, y) we have

bTy = xTATy ≥ xTc.

Hence, every feasible solution of the dual gives an upper bound on the optimal value of the primal
and every feasible solution of the primal yields a lower bound on the optimal value of the dual. This
property is called weak duality. For linear programs we even have strong duality, which means
that the maximal objective value of the primal equals the minimal objective value of the dual.

22 Chapter 2 Preliminaries



Closely related to this is the so-called complementary slackness. This means that for a pair of
optimal solutions for the primal and the dual (x∗, y∗) we have for all i = 1, 2, . . . , n that

x∗
i > 0 ⇒ (ATy∗)i = ci and (ATy∗)i > ci ⇒ x∗

i = 0.

These are also sufficient conditions, in other words, for a pair of feasible points (x, y) that satisfies
the complementary slackness conditions, x is an optimal solution for the primal and y an optimal
solution for the dual.

(Mixed) integer programming. If we consider a linear program as depicted above but additionally
demand that all components of x are integers (i.e., x ∈ Zn) we obtain a so-called integer (linear)
program. There are many different combinatorial problems that can be modeled by integer programs.
Even though, there most likely does not exist any efficient algorithm, as solving an integer program
is NP-complete, there are software-solvers that find a solution rather fast for most reasonable sized
instances.
A variation of integer programs are mixed integer programs where only some of the variables have
to be integers. Therefore, the standard form of these problems for a given index set I ⊆ { 1, 2, . . . , n }
is given by

max
x∈Rn

cTx

s.t. Ax = b,

x ≥ 0,

xi ∈ Z for i ∈ I.

Often it is enough to restrict the discrete variables only to be in the set {0, 1}. In this case, they are
called Boolean variables. Unfortunately (mixed) integer programs with Boolean variables only are
still NP-complete.
For more details on linear and (mixed) integer programming we refer to the textbook of Schrijver
[85] and, for a more recent publication, to the book of Weismantel and Bertsimas [3].

2.7 Flows Over Time
As final topic of the preliminaries we want to give a brief introduction into flows over time without
considering game-theoretical aspects. Instead we want to consider two types of optimization
problems.

Feasible flows over time. Consider a network consisting of a directed graph G = (V, E) with a
source s and a sink t, such that t is reachable by s, as well as a capacity νe > 0 and a transit time
τe ≥ 0 for every arc e ∈ E. A family of locally integrable and bounded functions f = (fe)e∈E , where
fe : [0, ∞) → [0, ∞) denotes the inflow rate into arc e at time θ, is called flow over time if flow
conservation is satisfied at every node v ∈ V \ { s, t } for almost all θ ∈ [0, ∞):∑

e∈δ−
v

fe(θ − τe) =
∑

e∈δ+
v

fe(θ).

Here, fe(θ − τe) denotes the outflow rate of arc e at time θ and since there cannot be any delay in
this model, this equals the inflow rate at time θ − τe. Note that for θ < τe we define this value as 0.
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The value function of a flow over time is given by the excess at sink t for each point in time:

|f | (θ) :=
∑

e∈δ−
t

∫ θ−τe

0
fe(ξ) dξ −

∑
e∈δ+

t

∫ θ

0
fe(ξ) dξ.

We call a flow over time f feasible if fe(θ) ≤ νe holds for all e ∈ E and almost all θ ∈ [0, ∞).

Optimal Flows Over Time Without giving too much details we want to present two typical optimiza-
tion problems for flows over time.

A typical optimization problem is the maximum flow over time problem that asks for a given time
horizon H ≥ 0 to determine a feasible flow over time f with maximal |f | (H). This problem can be
solved with the help of so-called temporally repeated flows, which are feasible flows over time
corresponding to a path decomposition of a feasible static s-t-flow. The key idea is to send a constant
flow rate of xP into each simple path P ∈ P during the interval [0, H −

∑
e∈P τe]. This leads to an

objective value of
H · |x| −

∑
e∈E

τe · xe.

It turns out that a temporally repeated flow with an underlying feasible static flow that maximizes
this value is indeed a maximum flow over time and it can be computed efficiently by an algorithm of
Ford and Fulkerson. For details on this we refer to the survey of Skutella [89].

The quickest flow problem for a given flow volume M ≥ 0 is to find a flow over time that sends M

units of flow as fast as possible from the source to the sink. In other words, the goal is to minimize
the arrival time of the particle that arrives last. As mentioned in the introduction this can be solved
by combining the algorithm of Ford and Fulkerson for the maximum flow over time problem with a
binary search framework (or faster with parametric search); see [29, 11].

The temporally repeated flows for the maximum flow over time problem are constructed specifically
for a given time horizon H, and therefore, we cannot expect that the value of a maximum flow over
time is also optimal for earlier points in time θ < H. Surprisingly, it is possible to construct a feasible
flow over time that is maximal for all times simultaneously, and in addition, solves the quickest flow
problem for all flow volumes at the same time. These flows over time are called earliest arrival
flows and they can be constructed by considering generalized temporally repeated flows; see
Figure 2.5 for an example. By considering the transit times as costs we can apply the successive
shortest path algorithm (see optimal static flows on page 12) in order to obtain a generalized path
decomposition (xP )P ∈P∗ . Note that in this decomposition paths are allowed to use an arc in the
inverse direction. The earliest arrival flow is then obtained by sending a constant flow rate of xP into
each of these augmenting paths. This means that we might send a negative flow rate in the inverse
direction back in time. But it turns out that whenever this happens, this negative flow cancels out
with a positive flow that is sent in the forward direction. For the proof that such a flow is always
well-defined and that it is indeed an earliest arrival flow we refer to [89].

2.8 Notation
In order to make this thesis as comprehensible as possible we try to keep the notation intuitive and
consistent. Throughout this thesis f is used for a flow over time consisting of functions representing
flow rates that are (locally) integrable but in general not differentiable. For the integral functions,
which are almost everywhere differentiable, we use the corresponding capital letter F . Graphs
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Figure 2.5: An earliest arrival flow at different snapshots in time in the network depicted in the upper left. The
labels denote the transit times and we consider unit capacities as well as a time horizon of H = 16.
All arcs are orientated from left to right. The successive shortest path algorithm (top right) picks the
direct route (s, u, v, t) first and sends one unit of flow there. Next, it chooses the long augmenting
path that includes the backward arc vu. In the earliest arrival flow this corresponds to a negative
flow over time that is sent from v to u backwards in time from θ = 8 to θ = 6. In the bottom left,
we observe that at time θ = 7 this negative flow cancels out with the positive forward traveling
flow between u and v.

2.8 Notation 25



are denoted by G = (V, E) with source s and sink t and the letters u, v, w are reserved for nodes,
whereas e is used for arcs, and only very rarely for the Euler constant. The non-negative real numbers
are normally denoted by [0, ∞) (or [0, ∞] if ∞ is included). This notation is used whenever we
denote flow rates or points in time (denoted by θ or ϑ) and only if we consider the flow as set of
all particles (denoted by ϕ or φ) we write R≥0. The set of commodities is, in general, given by J

and the individual commodities are denoted by either j or i. Finally, x and ℓ are reserved for the
underlying static flow and the earliest arrival times and their derivatives are denoted by x′ and ℓ′.
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The Base Model 3
In this chapter we consider dynamic equilibria in the most basic flow over time model with deter-
ministic queuing. Even though the flow dynamics were already mentioned by Vickrey in 1969 [96],
Koch and Skutella were the first to consider Nash flows over time within this model [54] (for the
full version see [55]). Cominetti, Correa, Larré, Olver and others extended the theory during the
following years [17, 18, 19, 20].
At the beginning of this chapter we give an intuitive as well as a formal definition of the flow over
time model with deterministic queuing in Sections 3.1 and 3.2. After defining Nash flows over time
and thin flows with resetting, we present the main results of the aforementioned publications in
Sections 3.3 and 3.4. Finally, we give a short overview of the computation and the most recent
results of dynamic equilibria in this base model, namely the long-term behavior and the price of
anarchy, in Section 3.6.
It is worth noting that for the sake of consistency to later chapters the notation of the presented
model slightly differs from the notation in literature. On the one hand, we always imagine the
queues to be at the head of the arcs and, on the other hand, we consistently differentiate between a
particle ϕ and the time it enters the network ℓ(ϕ). This adapted notation is completely equivalent
to the original formulation from literature but both of these modifications will be important for
extended models in later chapters.

3.1 Modeling Road Networks
In order to motivate flows over time with deterministic queuing and to give some intuition on the
flow dynamics we present a model of a street segment and show how it translates to an arc in a flow
over time network.

Road model. Consider the following simplified discrete model of a road network. Each street
segment is equipped with a length ℓ, a width w (number of lanes) and a speed limit v; see left side
of Figure 3.1. Each street segment starts and ends at a street node, for example an intersection, and
the segment is one-directional.
Traffic is denoted by two functions f+, f− : N0 → N0, where f+(θ) describes the number of vehicles
entering and f−(θ) the number of cars leaving the segment at time step θ. After entering a street it
takes ℓ/v time to traverse the segment unless there is some congestion. The width induces an upper
limit on the number of vehicles that can traverse the street per time unit, which we call capacity. If
more cars enter the street than the capacity allows the traffic users have to reduce the velocity, which
leads to congestion. We consider the simplest model of traffic congestion.
The number of vehicles that are allowed to leave a road segment is restricted by the capacity and if
more cars want to leave they have to line up in a queue in front of the exit. In summary, a vehicle
entering the segment first moves with maximal speed of v until it hits the end of the traffic jam.
There it lines up and waits until it leaves the street in order to enter a successive line segment.
Note that overtaking is not allowed within one segment and streets can never become full for now.
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Figure 3.1: On the left: A road segment of length ℓ and width w with speed limit v. Atomic vehicles enter over
time, traverse the arc at speed v before lining up at the tail of the queue. Only the particles at the
front can leave the arc. On the right: An arc with transit time τ and capacity ν as we consider it in
the base model. A flow over time is defined by the inflow rate f+(θ) and the outflow rate f−(θ)
for every point in time θ ∈ [0, ∞). Additionally, we consider the queue size z(θ) at time θ as only a
rate of ν can leave the arc at any point in time.

Arc model. In the flow over time model the traffic is described by a continuous flow over time in
a directed graph; see right side of Figure 3.1. Each street segment corresponds to a directed arc
between two nodes. Every arc is hereby equipped with a free flow transit time τ corresponding to ℓ/v

and a capacity ν corresponding to w.
Incoming and outgoing traffic flow is described by two functions f+, f− : [0, ∞) → [0, ∞), which
denote the inflow and outflow rate at each point in time.
If the inflow rate exceeds the capacity a point queue is built up right before the head of the arc,
where the particles line up. Note that the flow on every arc has to follow the FIFO principle, hence,
no particle can overtake any other particle.

3.2 Deterministic Queuing Model
In this section we define the dynamics of flows over time in the deterministic queuing model in a
mathematical precise way. This section is heavily based on the formulation introduced by Koch and
Skutella [54] that was later improved by Cominetti, Correa and Larré [17].

Networks. A flow over time network in the base model consists of a directed graph G = (V, E) with
a source s and a sink t, such that each node is reachable by s. Furthermore, we have a constant
network inflow rate at s of r > 0 and every arc e is equipped with a transit time τe ≥ 0 and a capacity
νe > 0. We assume that the sum of transit times in every directed cycle is strictly positive.

Flows over time. A flow over time is specified by a family of functions f = (f+
e , f−

e )e∈E , where
f+

e , f−
e : [0, ∞) → [0, ∞) are locally integrable and bounded functions for every arc e. Hereby, the

function f+
e describes the inflow rate and f−

e the outflow rate of arc e for every given point in
time θ ∈ [0, ∞). The cumulative in- and outflow of an arc e is the total amount of flow that has
entered or left e up to some point in time θ and is defined by

F +
e (θ) :=

∫ θ

0
f+

e (ξ) dξ and F −
e (θ) :=

∫ θ

0
f−

e (ξ) dξ.

Due to technical reasons we define f+
e (θ) = f−

e (θ) = F +
e (θ) = F −

e (θ) = 0 for all θ < 0.

Flow conservation. We say f = (f+
e , f−

e )e∈E is a flow over time if it conserves flow on all arcs e:

F −
e (θ + τe) ≤ F +

e (θ) for all θ ∈ [0, ∞), (3.1)
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and if it conserves flow at every node v ∈ V \ { t }, which means that the following equation holds
for almost all θ ∈ [0, ∞):

∑
e∈δ+

v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) =

0 if v ∈ V \ { t } ,

r if v = s.
(3.2)

Particles entering arc e at time θ need τe time to traverse the arc, and therefore, they reach the head
of e earliest at time θ + τe. Hence, (3.1) ensures that the amount of flow that leaves e cannot exceed
the amount of flow that has entered and traversed the arc. In other words, flow is not created within
arcs. In addition, (3.2) ensures that the network does not leak at intermediate nodes and that we
have a constant network inflow rate of r at s. Note that flow can be stored within arcs but never on
nodes.

Queues. For every arc e there is a bottleneck given by its capacity νe right before the head of the
arc. If more flow wants to leave e than the capacity allows, a queue builds up at the exit of the arc.
The amount of flow in the queue at time θ is given by

ze(θ) := F +
e (θ − τe) − F −

e (θ).

The queue does not have any physical dimension in the network and is therefore called point queue.

Feasibility. In the base model we say a flow over time f is feasible if the queue operates at capacity,
that means we have

f−
e (θ) =

νe if ze(θ) > 0,

min { f+
e (θ − τe), νe } else,

for almost all θ ∈ [0, ∞). (3.3)

Note that this equation together with the definition of ze immediately implies (3.1), which shows
that a family of locally integrable and bounded functions f = (f+

e , f−
e )e∈E is already a feasible flow

over time if only (3.2) and (3.3) are satisfied.

Waiting times. Given a feasible flow over time f , a particle entering an arc e at time θ first
traverses the arc in τe time units and then queues up and has to wait in line. Hence, the waiting
time qe : [0, ∞) → [0, ∞) is given by

qe(θ) := ze(θ + τe)
νe

.

Note that qe(θ) denotes the waiting time of particles that enter the arc at time θ, and therefore, they
enter the queue only at time θ + τe. Hence, the actual waiting period of those particles is given by
[θ + τe, θ + τe + qe(θ)].

Exit times. The exit time for arc e is the function Te : [0, ∞) → [0, ∞) that maps the entrance time θ

to the time a particle leaves the arc

Te(θ) := θ + τe + qe(θ).

Suppose a flow particle enters e at time θ, then the amount of flow which has entered e before θ is
exactly the amount of flow that has left e before time Te(θ), when the particle leaves the arc. This
and other technical properties are collected in the following lemma.
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Lemma 3.1. For a feasible flow over time f it holds for all e ∈ E, v ∈ V and θ ∈ [0, ∞) that:

(i) qe(θ) > 0 ⇔ ze(θ + τe) > 0.

(ii) ze(θ + τe + ξ) > 0 for all ξ ∈ [0, qe(θ)).

(iii) F +
e (θ) = F −

e (Te(θ)).

(iv) For θ1 < θ2 with F +
e (θ2) − F +

e (θ1) = 0 and ze(θ2 + τe) > 0 we have Te(θ1) = Te(θ2).

(v) The functions Te are monotonically increasing.

(vi) The functions F +
e , F −

e , ze, qe and Te are almost everywhere differentiable.

(vii) For almost all θ ∈ [0, ∞) we have

q′
e(θ) =


f+

e (θ)
νe

− 1 if qe(θ) > 0,

max
{

f+
e (θ)
νe

− 1, 0
}

else.

Most of the statements follow immediately from the definitions and some involve some minor
calculations. For (vi) we use Lebesgue’s differentiation theorem (Theorem 2.4 on page 18). As the
proof does not give any interesting further insights we moved it to the appendix on page 46.

3.3 Nash Flows Over Time
In this section we define a dynamic equilibrium, called Nash flow over time, and state the most
important characterizations. In a dynamic equilibrium each particle of the flow can be seen as a
separate player that tries to minimize its travel time from the source to the sink.

Earliest arrival times. The source arrival time function maps each particle ϕ ∈ R≥0 to the time
it arrives at s and is therefore given by Ts(ϕ) := ϕ

r . For an s-v path P = (e1, e2, . . . , ek) the arrival
time function TP : R≥0 → [0, ∞) maps the particle ϕ to the time at which ϕ arrives at v if it traverses
the path P , hence, we define

TP (ϕ) := Tek
◦ Tek−1 ◦ · · · ◦ Te1 ◦ Ts(ϕ).

The earliest arrival time function ℓv : R≥0 → [0, ∞) of node v ∈ V maps each particle ϕ to the
earliest time ℓv(ϕ) it can possibly reach node v. We have

ℓv(ϕ) := min
P ∈Pv

TP (ϕ),

where Pv is the set of all paths from s to v. Since all directed cycles in G have positive travel times,
the earliest arrival times of every particle ϕ are characterized by the following equations:

ℓs(ϕ) = Ts(ϕ) = ϕ

r
,

ℓv(ϕ) = min
e=uv∈E

Te(ℓu(ϕ)) for v ∈ V \ { s } .
(3.4)

Clearly, for given waiting time functions, the earliest arrival times can be computed efficiently
by, for example, Dijkstra’s algorithm. Furthermore, note that for every v ∈ V the function ℓv
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Figure 3.2: The current shortest paths for particle ϕ = 8. Each arc is labeled with the transit time and the
framed labels near the nodes display the earliest arrival times for this particle. If there is a positive
queue at the respective time the corresponding waiting time is shown in blue. With a network
inflow rate of 2, particle ϕ = 8 enters the network at time ℓs(8) = 4. As there are no queues on the
first arcs the particle could arrive earliest at time ℓv1 (8) = 6 at node v1 and ℓv2 (8) = 7 at node v2.
As there is a queue on arc v1v4 at time 6 the particle experiences a waiting time of qv1v4 (6) = 1
leading to an earliest arrival time at v4 of ℓv4 (8) = 9. In this particular instance all arcs except for
v2v4 are active. Especially, the paths (s, v1, v4, t) and (s, v1, v3, t) are both current shortest paths.

is monotonically increasing since it is a minimum of monotonically increasing functions Te (see
Lemma 3.1 (v)). Hence, by Theorem 2.5 every earliest arrival time function ℓv is almost everywhere
differentiable. We denote the derivative by ℓ′

v.

Current shortest paths networks and active arcs. In an equilibrium every particle wants to get to
the sink as fast as possible and will therefore use a shortest path. For a fixed particle ϕ we call an
arc e = uv active for ϕ if ℓv(ϕ) = Te(ℓu(ϕ)) holds. These are exactly the arcs that can be used in
order to be as fast as possible. We denote the set of all active arcs for particle ϕ by

E′
ϕ := { e = uv ∈ E | ℓv(ϕ) = Te(ℓu(ϕ)) }

and the subgraph G′
ϕ = (V, E′

ϕ) is called the current shortest paths network. An example of the
earliest arrival times and a current shortest paths network is depicted in Figure 3.2.

Resetting arcs. It will be important to specify the arcs at which a particle would experience a
waiting time when traveling along a shortest path. Hence, we call the set

E∗
ϕ := { e = uv ∈ E | qe(ℓu(ϕ)) > 0 }

the resetting arcs of particle ϕ.

Dynamic equilibria. Since every particle wants to arrive at the sink t as early as possible, it should
only use current shortest paths, which leads to the following definition.

Definition 3.2 (Nash flow over time).
A feasible flow over time f is a Nash flow over time, also called dynamic equilibrium, if the
following Nash flow condition holds:

f+
e (θ) > 0 ⇒ θ ∈ ℓu(Φe) for all arcs e = uv ∈ E and almost all θ ∈ [0, ∞), (N)

where Φe := { ϕ ∈ R≥0 | e ∈ E′
ϕ } is the set of flow particles for which arc e is active.

Figuratively speaking, this condition means that a Nash flow over time uses only active arcs, and
therefore only shortest paths to the sink t. More precisely, particle ϕ reaches t at time ℓt(ϕ) by using
active arcs only and ℓt(ϕ) is the earliest time ϕ can possibly reach t under the assumption that the
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routes of all previous particles φ < ϕ are fixed. Since this is true for all particles, a Nash flow over
time is indeed a Nash equilibrium in a game with a continuum of players.

Lemma 3.3 (cf. Theorem 1 in [17]). Let f be a feasible flow over time, Φe := { ϕ ∈ R≥0 | e ∈ E′
ϕ }

the set of all particles for which e is active and Φc
e := R≥0 \ Φe its complement. Then the following

statements are equivalent:

(i) f is a Nash flow over time.

(ii) For each arc e = uv, it holds that f+
e (θ) = 0 for almost all θ ∈ ℓu(Φc

e).

(iii) F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)) holds for all arcs e = uv and all particles ϕ.

(iv) For every arc e = uv and almost all ϕ ∈ Φc
e we have f+

e (ℓu(ϕ)) · ℓ′
u(ϕ) = 0.

(v) For all ϕ and every arc e = uv we have: If F +
e (ℓu(ϕ) − ε) < F +

e (ℓu(ϕ)) for all ε > 0 then e ∈ E′
ϕ.

Especially the equations in (iii) are essential for the following considerations and the intuitive idea
why they hold in a Nash flow over time is the following. Either arc e is active, then the equation
follows from Lemma 3.1 (iii) or e is not active, but then the Nash condition states that there was
no inflow between the last point in time θ when this arc was active and ℓu(ϕ). Hence, we have
F +

e (ℓu(ϕ)) = F +
e (θ) = F −

e (Te(θ)) ≤ F −
e (ℓv(ϕ)), which together with the flow conservation on arcs

(3.1) shows that F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)). The equivalences of (i) to (iv) were first shown in [17,
Theorem 1] and a detailed version of the proof can be found in the appendix on page 46.
As a further result we observe that queues can only occur on active arcs in a Nash flow over time and
the earliest arrival times characterize which arcs are active and which are resetting.

Lemma 3.4 (cf. Proposition 2 in [17]). Given a Nash flow over time the following holds for all
particles ϕ:

(i) E∗
ϕ ⊆ E′

ϕ.

(ii) E′
ϕ = { e = uv | ℓv(ϕ) ≥ ℓu(ϕ) + τe }.

(iii) E∗
ϕ = { e = uv | ℓv(ϕ) > ℓu(ϕ) + τe }.

The main idea of (i) is that for a resetting arc we have by definition that arc e = uv has a positive
waiting time at ℓu(ϕ). If e would not be active for ϕ then it would also have not been active for the
last particles in the queue of e. But this is a contradiction to the Nash condition. The detailed proof,
first given in [17, Proposition 2], can be found in the appendix on page 49.

Underlying static flows. Lemma 3.3 (iii) motivates to consider the underlying static flow for every
particle ϕ, which is defined by

xe(ϕ) := F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)).

For a fixed particle ϕ this is indeed a static s-t-flow since the integral of (3.2) over [0, ℓv(ϕ)] yields

∑
e∈δ+

v

xe(ϕ) −
∑

e∈δ−
v

xe(ϕ) =

0 if v ∈ V \ { s, t } ,

ϕ if v = s.
(3.5)

By taking the derivative of both sides, which exists for almost all ϕ according to Theorem 2.4, we
obtain
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∑
e∈δ+

v

x′
e(ϕ) −

∑
e∈δ−

v

x′
e(ϕ) =

0 if v ∈ V \ { s, t } ,

1 if v = s.
(3.6)

Note that it is possible to reconstruct the in- and outflow function of every arc e = uv by these
derivatives x′

e(ϕ) together with the derivatives of the earliest arrival times ℓ′
u and ℓ′

v. This becomes
clear when we apply the chain rule to determine the derivatives of xe = F +

e ◦ ℓu = F −
e ◦ ℓv. We have

x′
e(ϕ) = f+

e (ℓu(ϕ)) · ℓ′
u(ϕ) = f−

e (ℓv(ϕ)) · ℓ′
v(ϕ). (3.7)

Consequently, a Nash flow over time is completely characterized by these derivatives, which have a
very specific structure that is analyzed in the next section.

3.4 Thin Flows with Resetting
In the considered flow over time game every particle does not only choose one s-t-path but it can
also split up even further and each part can take a different path from s to t. Hence, a strategy of a
particle ϕ is, in fact, a convex combination of such paths, or in other words, a strategy is given by a
static s-t-flow of value 1.
It turns out that for Nash flows over time the strategies of almost all particles have a specific structure,
called thin flows with resetting. These are static s-t-flows on the respective current shortest paths
network together with real-valued node labels. A preliminary form of these flows was introduced
by Koch and Skutella in [54] and Cominetti et al. sharpened the definition in [18] and called them
normalized thin flows with resetting. Throughout this thesis we will omit the “normalized” even
though we still use a definition equivalent to the formulation in [18].

Thin flows with resetting. Let G′ = (V, E′) be an acyclic subgraph of G such that every node is
reachable by s. Note that not every node needs to be able to reach the sink. Additionally, we consider
a subset of arcs E∗ ⊆ E′, called resetting arcs.

Definition 3.5 (Thin flow with resetting).
A static s-t flow (x′

e)e∈E in G′ of value 1 together with a node labeling (ℓ′
v)v∈V is called thin

flow with resetting on E∗ if:

ℓ′
s = 1

r
(TF1)

ℓ′
v = min

e=uv∈E′
ρe(ℓ′

u, x′
e) for all v ∈ V \ { s } , (TF2)

ℓ′
v = ρe(ℓ′

u, x′
e) for all e = uv ∈ E′ with x′

e > 0, (TF3)

where ρe(ℓ′
u, x′

e) :=


x′

e

νe
if e = uv ∈ E∗,

max
{

ℓ′
u,

x′
e

νe

}
if e = uv ∈ E′\E∗.

The intuitive idea behind these equations is that x′
e

νe
describes the stress value of an arc e if a fraction

of x′
e of the particles decides to use this arc. The stress value of an s-v-path is then determined by

the highest stress value of its arcs (i.e., by the bottleneck arc along the path), as long as there are no
resetting arcs; see ρe(l′

u, x′
e) if e /∈ E∗. At every resetting arc along the path the values of all previous

arcs are dismissed and the stress value of the path is reset; see ρe(l′
u, x′

e) if e ∈ E∗. This is logical
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since a high stress value of preceding arcs can be compensated by decreasing the queue, as long as
there is a positive queue.
Finally, the value ℓ′

v is the minimal stress value of all paths from s to v; see (TF2). For high stress
values following particles need more time to reach node v, hence, these stress values coincide exactly
with the slope of the earliest arrival time functions.
If ℓ′

v < ρe(ℓ′
u, x′

e), this means that e leaves the current shortest paths network, and therefore, it
cannot be used by following particles, i.e., x′

e = 0. In other words, an interval of particles in a Nash
flow over time can only use arcs that lie on a path with minimal stress value; see (TF3).
Furthermore, ℓ′

u <
x′

e

νe
means that arc e is a bottleneck, and therefore, the queue will grow. Whenever

we have ℓ′
u >

x′
e

νe
the arc e has a smaller stress value than the preceding arcs along the s-v-path.

Hence, the queue will decrease if e is resetting, or stay empty otherwise. For ℓ′
u = x′

e

νe
the arc has the

exact same stress value as the arcs before, so the queue will stay constant.
Examples of thin flows with resetting are displayed in the middle of Figure 3.3 on page 40.
As the first central structural result on Nash flows over time, the next theorem states that the
derivatives of a Nash flow over time form, almost everywhere, a thin flow in the current shortest
paths network with resetting on the set of arcs with positive queues.

Theorem 3.6 (cf. Theorem 9 in [54]).
For a Nash flow over time f = (f+

e , f−
e )e∈E the derivatives (x′

e(ϕ))e∈E′
ϕ

together with (ℓ′
v(ϕ))v∈V

form a thin flow with resetting on E∗
ϕ in the current shortest paths network G′

ϕ = (V, E′
ϕ) for

almost all ϕ ∈ R≥0.

This theorem was first proven by Koch and Skutella for the preliminary form of thin flows in [54,
Theorem 9]. For the improved formulation of thin flows a proof was given in [17, Theorem 2]. The
proof we present in the following is similar to the one in [17], but we were able to keep the case
distinctions to a minimum.

Proof. By Lemma 3.4 (i) we have that E∗
ϕ ⊆ E′

ϕ, and furthermore, Gϕ is acyclic since the total transit
time of every directed cycle is strictly positive. In other words, the preconditions for a thin flow are
satisfied.
We have to show that Equations (TF1) to (TF3) hold for almost all particles. For this let ϕ be a particle
such that for all e = uv the derivatives of xe, ℓv, and Te ◦ ℓu exist and x′

e(ϕ) = f+
e (ℓu(ϕ)) · ℓ′

u(ϕ) =
f−

e (ℓv(ϕ)) · ℓ′
v(ϕ). This is given for almost every particle ϕ ∈ R≥0.

(TF1) follows directly from (3.4).

(TF2) can be shown by taking the derivative of Te(θ). By Lemma 3.1 (vii) we have

T ′
e(θ) = 1 + q′

e(θ) =


f+

e (θ)
νe

if qe(θ) > 0,

max
{

f+
e (θ)
νe

, 1
}

else.

We obtain

d
dϕ

Te(ℓu(ϕ)) = T ′
e(ℓu(ϕ)) · ℓ′

u(ϕ) =


x′

e(ϕ)
νe

if qe(ℓu(ϕ)) > 0,

max
{

x′
e(ϕ)
νe

, ℓ′
u

}
else,

 = ρe(ℓ′
u(ϕ), x′

e(ϕ)).

Applying the differentiation rule for a minimum (Lemma 2.3 on page 17) on the equations (3.4)
yields (TF2).
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(TF3) is satisfied because for x′
e(ϕ) = f−

e (ℓv(ϕ)) · ℓ′
v(ϕ) > 0 we have

ℓ′
v(ϕ) = x′

e(ϕ)
f−

e (ℓv(ϕ))
=


x′

e(ϕ)
min

{
f+

e (ℓu(ϕ)), νe

} if ze(ℓu(ϕ) + τe) = 0,

x′
e(ϕ)
νe

else,

=

 max
{

ℓ′
u,

x′
e(ϕ)
νe

}
if e ∈ E′

ϕ\E∗
ϕ,

x′
e(ϕ)
νe

if e ∈ E∗
ϕ,

 = ρe(ℓ′
u(ϕ), x′

e(ϕ)).

Hence, the derivatives (x′
e(ϕ))e∈E′

ϕ
together with the node labels (ℓ′

v(ϕ))v∈V form a thin flow with
resetting on E∗

ϕ.

As the second main result we show that the reverse direction of Theorem 3.6 is also true in the sense
that we can use thin flows with resetting to construct a Nash flow over time. For this we first prove
that there always exists a thin flow with resetting for any acyclic graph G′ with arbitrary positive arc
capacities and for any subset of resetting arcs E∗.

Theorem 3.7 (cf. Theorem 4 in [18]).
Consider an acyclic graph G′ = (V, E′) with source s, sink t and capacities (νe)e∈E as well as a
subset of arcs E∗ ⊆ E′. Suppose that every node v ∈ V is reachable from s. Then there exists a
thin flow ((x′

e)e∈E , (ℓ′
v)v∈V ) with resetting on E∗.

The first proof in [18, Theorem 4] is quite complicated and uses some existence results of finite-
dimensional variational equalities and the corresponding nonlinear complementarity problem. The
proof we present in the following is due to [17, Theorem 3] and uses a set-valued function in order
to apply Kakutani’s fixed-point theorem.

Proof. Let X be the compact, convex and non-empty set of all static s-t-flows of value 1 and let
Γ: X → 2X be defined by

x′ 7→ { y′ ∈ X | y′
e = 0 for all e = uv ∈ E′ with ℓ′

v < ρe(ℓ′
u, x′

e) } ,

where (ℓ′
v)v∈V are the node labels associated with x′ uniquely defined by

ℓ′
v =


1
r if v = s,

min
e=uv∈E′

ρe(ℓ′
u, x′

e) if v ∈ V \ { s } .
(3.8)

In order to use Kakutani’s fixed point theorem (Theorem 2.9 on page 22) we show that all conditions
are satisfied:

• The set Γ(x′) is non-empty, because there has to be at least one path P from s to t with
ℓ′

v = ρe(ℓ′
u, x′

e) for each arc e on P . If we set ye = 1 for all arcs e on P and set every other
value to 0 we obtain an element in Γ(x′).

• To see that Γ(x′) is convex, note that the arcs that can be used for sending flow, i.e., the
ones satisfying ℓ′

v = ρe(ℓ′
u, x′

e), are fixed within the set Γ(x′). Furthermore, every convex
combination y of two elements y1, y2 ∈ Γ(x′) only uses arcs that are also used by y1 or y2.

• In order to show that the function graph { (x′, y′) | y′ ∈ Γ(x) } is closed let (xn, yn)n∈N be a
sequence within this set, i.e., yn ∈ Γ(xn). Since both sequences, (xn)n∈N and (yn)n∈N, are
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contained in the compact set X they both have a limit x∗ and y∗ within X. Let (ℓn)n∈N be the
sequence of associated node labels of (xn) and ℓ∗ the node label of x∗. Note that the mapping
x′ 7→ ℓ′ is continuous, and therefore, it holds that ℓ∗ = limn→∞ ℓn. We prove that y∗ ∈ Γ(x∗).
Suppose there is an arc e = uv ∈ E′ with y∗

e > 0 and ℓ∗
v < ρe(ℓ∗

u, x∗
e). But since ρe is continuous

there has to be an n0 ∈ N such that yn
e > 0 and ℓn

v < ρe(ℓn
u, xn

e ) for all n ≥ n0, which is a
contradiction. Hence, { (x′, y′) | y′ ∈ Γ(x) } is closed.

Since all conditions for Kakutani’s fixed point theorem are satisfied, there has to be a fixed point x∗

of Γ. Let ℓ∗ be the corresponding node labeling. We show that the pair (x∗, ℓ∗) satisfies the thin flow
conditions. Equations (TF1) and (TF2) follow immediately by (3.8). For every arc e = uv ∈ E′ with
x∗

e > 0 it holds that ℓ∗
v = ρe(ℓ∗

u, x∗
e) since x∗ ∈ Γ(x∗), which shows Equation (TF3). Thus, (x∗, ℓ∗)

forms a thin flow with resetting, which completes the proof.

Finally, we show that thin flows are unique in the sense that the node labels are uniquely determined.
Note that this is the best we can get as it is easy to see that the static flow x′ is not unique in general.
Consider a network consisting of two disjoint paths from s to t, where all arc capacities are greater
than the network inflow rate. If the set of resetting arcs is empty then every static flow, no matter
how we split it along the two paths, is a thin flow with resetting. Hence, x′ is highly non-unique
in this example. Nonetheless, it is easy to see that the node labels are uniquely determined in
this specific network, as we have ℓ′

v = 1 for all nodes v. In the following we show that this is no
coincidence but holds in general.

Proposition 3.8 ([17, Theorem 4]). The node labels of thin flows are uniquely determined by the
network.

Proof. Consider two thin flows (x′, ℓ′) and (y′, k′) on the same network. Note that the notation δ−

and δ+ refers to all incoming and outgoing arcs in the graph G′ = (V, E′). Let

W := { v ∈ V | ℓ′
v > k′

v }

and assume for contradiction that W ̸= ∅.
For e = uv ∈ δ+

W we have x′
e ≤ y′

e, since otherwise we would have x′
e > y′

e ≥ 0, and therefore, by
(TF3) it would follow that

ℓ′
v = ρ(ℓ′

u, x′
e) > ρ(k′

u, y′
e) ≥ k′

v.

This would be a contradiction to v /∈ W . But we also obtain that x′
e ≥ y′

e for all e = uv ∈ δ−
W since

otherwise we would have y′
e > x′

e ≥ 0 and again by (TF3) this would imply

k′
v = ρ(k′

u, y′
e) ≥ ρ(ℓ′

u, x′
e) ≥ ℓ′

v,

contradicting v ∈ W . Since both x′ as well as y′ are static flows of value 1 we have∑
e∈δ+

W

x′
e −

∑
e∈δ−

W

x′
e =

∑
e∈δ+

W

y′
e −

∑
e∈δ−

W

y′
e.

Hence, it follows that x′
e = y′

e for all e ∈ δ+
W ∪ δ−

W , since a strict inequality for some e could not be
compensated. Furthermore, we have x′

e = y′
e = 0 for all e ∈ δ−

W since otherwise we would have
y′

e > 0 and as before this would lead to a contradiction to v ∈ W as this would imply

k′
v = ρ(k′

u, y′
e) ≥ ρ(ℓ′

u, x′
e) ≥ ℓ′

v.
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Since G′ is acyclic and s /∈ W , as ℓ′
s = k′

s = 1
r , there has to be a node v∗ ∈ W with δ−

v∗ ⊆ δ−
W and

δ−
v∗ ̸= ∅ (this node can be obtained by starting at some node v0 ∈ W and then going backwards

along an arc v1v0 whenever v1 ∈ W ). For all arcs e = uv∗ ∈ δ−
v∗ we have x′

e = 0, and therefore,
ℓ′

v∗ > k′
v∗ implies e ∈ E′ \ E∗. Hence, ρe(ℓ′

u, x′
e) = ℓ′

u and ρe(k′
u, y′

e) = k′
u. But this is a contradiction

to v∗ ∈ W since with (TF2) we have

k′
v∗ = min

e=uv∗∈δ−
v∗

k′
u ≥ min

e=uv∗∈δ−
v∗

ℓ′
u = ℓ′

v∗ .

Thus, W is empty, implying ℓ′
v ≤ k′

v for all v ∈ V and for symmetric reasons it holds with the same
argument that ℓ′

v ≥ k′
v for all v ∈ V . This proves that the node labels are uniquely determined for all

thin flows with resetting.

3.5 Constructing Nash Flows Over Time
In this section we will show how to use a sequence of thin flows with resetting in order to construct
a Nash flow over time.
Note that in a dynamic equilibrium no particle is able to overtake any other particle, and therefore,
the choice of strategy for ϕ only depends on the strategies of flow that has entered the network
before ϕ. So we may assume that the particles decide in order of their arrival at the source, i.e., ϕ1

chooses a strategy before every ϕ2 > ϕ1. Due to this observation, it is possible to extend a given
Nash flow over time up to some ϕ ∈ R≥0 by using a thin flow on the current shortest paths network
G′

ϕ with resetting on E∗
ϕ.

Restricted Nash flows over time. A restricted Nash flow over time on [0, ϕ] is a Nash flow over
time where only the particles in [0, ϕ] are considered, i.e., for each arc e = uv ∈ E we have f+

e (θ) = 0
for all θ > ℓu(ϕ), f+

e (θ) = 0 for all θ > ℓv(ϕ), and the net outflow at s has to be 0 for θ > ℓs(ϕ). In
addition, the Nash flow condition (N) only must be satisfied for almost all times in [0, ℓu(ϕ)].

α-Extension. Since all previous results carry over to restricted Nash flows over time, the earliest
arrival times (ℓv)v∈V are well-defined for particles in [0, ϕ), and therefore, it is possible to deter-
mine G′

ϕ = (V, E′
ϕ) and E∗

ϕ; see Lemma 3.4. In order to extend a restricted Nash flow over time we
first compute a thin flow on G′

ϕ with resetting on E∗
ϕ, and then extend the labels linearly as follows.

For some α > 0 we define

ℓv(ϕ + ξ) := ℓv(ϕ) + ξ · ℓ′
v and xe(ϕ + ξ) := xe(ϕ) + ξ · x′

e.

for all v ∈ V , e ∈ E and ξ ∈ [0, α].
Based on this we can extend the in- and outflow functions, i.e., for all e = uv ∈ E we define

f+
e (θ) := x′

e

ℓ′
u

for θ ∈ [ℓu(ϕ), ℓu(ϕ + α)) and f−
e (θ) := x′

e

ℓ′
v

for θ ∈ [ℓv(ϕ), ℓv(ϕ + α)).

Note that in the case of ℓ′
u = 0 the time interval is empty. This extended flow over time is called

α-extension and we will show in Theorem 3.10 below that it is a restricted Nash flow over time on
[0, ϕ + α] as long as the α stays within the following bounds:

ℓv(ϕ) − ℓu(ϕ) + α(ℓ′
v − ℓ′

u) ≥ τe for all e = uv ∈ E∗, (3.9)

ℓv(ϕ) − ℓu(ϕ) + α(ℓ′
v − ℓ′

u) ≤ τe for all e = uv ∈ E \ E′. (3.10)
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The first inequality ensures that no flow can traverse an arc faster than its transit time. It holds
with equality when the queue of e depletes at time ℓu(ϕ + α), which we call depletion event. The
second inequality makes sure that all non-active arcs are unattractive for all particles in [ϕ, ϕ + α).
When it holds with equality the arc e becomes active for ϕ + α and we speak of an active event.
Whenever one of these events occurs we must compute a new thin flow with resetting because either
a resetting arc has become non-resetting or a non-active arc has become active. It is easy to see that
there exists an α > 0 that satisfies these inequalities since ℓv(ϕ) > ℓu(ϕ) + τe for arcs e ∈ E∗

ϕ and
ℓv(ϕ) < ℓu(ϕ) + τe for arcs e ̸∈ E′

ϕ as stated in Lemma 3.4.
For the maximal α we call the interval [ϕ, ϕ + α) thin flow phase.

Lemma 3.9. The α-extension forms a feasible flow over time and the extended ℓ-labels coincide with the
earliest arrival times, i.e., they satisfy (3.4) for all φ ∈ [ϕ, ϕ + α).

The flow conservation follows immediately from the flow conservation of x′ and 3.4 can be proven
by distinguishing three cases. If the arc is non-active it stays non-active during the extended interval.
For active, but non-resetting arcs that do not build up a queue, we obtain ℓv(ϕ + ξ) ≤ Te(ℓu(ϕ + ξ))
from (TF2), with equality if ℓ′

v = ρe(ℓ′
u, x′

e). The same is true for resetting arcs or arcs that build
up a queue, even though the proof for this is a bit more technical. A detailed proof is given in the
appendix on page 50.

Theorem 3.10 (cf. Theorem 3 [55]).
Given a restricted Nash flow over time f = (f+

e , f−
e )e∈E on [0, ϕ) and α > 0 satisfying (3.9)

and (3.10), the α-extension is a restricted Nash flow over time on [0, ϕ + α).

Proof. Lemma 3.3 yields F +
e (ℓu(φ)) = F −

e (ℓv(φ)) for all φ ∈ [0, ϕ), so for ξ ∈ [0, α) it holds that

F +
e (ℓu(ϕ + ξ)) = F +

e (ℓu(ϕ)) + x′
e

ℓ′
u

· ξ · ℓ′
u = F −

e (ℓv(ϕ)) + x′
e

ℓ′
v

· ξ · ℓ′
v = F −

e (ℓv(ϕ + ξ)).

By Lemmas 3.3 and 3.9 the α-extension is a restricted Nash flow over time on [0, ϕ + α).

Finally, we show that this construction leads to an unrestricted Nash flow over time.

Theorem 3.11.
There exists a Nash flow over time.

Proof. The process starts with the empty flow over time, i.e., a restricted Nash flow over time
for [0, 0). We apply Theorem 3.10 iteratively and choose α maximal according to (3.9) and (3.10).
If one of the α is unbounded we are done. Otherwise, we obtain a sequence (fi)i∈N, where fi is
a restricted Nash flow over time for [0, ϕi), with a strictly increasing sequence (ϕi)i∈N. In the case
that this sequence has a finite limit, say ϕ∞ < ∞, we define a restricted Nash flow over time f∞ for
[0, ϕ∞) by using the point-wise limit of the x- and ℓ-labels, which exists due to monotonicity and
boundedness of these functions. Note that there are only finitely many different thin flows, and
therefore, the derivatives x′ and ℓ′ are bounded. Then the process can be restarted from this limit
point. Let PG be the set of all particles ϕ ∈ R≥0 for which there exists a restricted Nash flow over
time on [0, ϕ) constructed as described above. The set PG cannot have a maximal element because
the corresponding Nash flow over time could be extended by using Theorem 3.10. But PG cannot
have an upper bound either since the limit of any convergent sequence would be contained in this set.
Therefore, there exists an unbounded increasing sequence (ϕi)∞

i=1 ∈ PG. As thin flows are unique
we have that the ℓ-functions coincide on [0, ϕi] for all restricted thin flows up to ϕj with j ≥ i. The
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same property can be obtained for the x-function by setting xj(ϕ) := xi(ϕ) for all j ≥ i. Hence, we
can construct a Nash flow over time f on [0, ∞) by taking the point-wise limit of the x- and ℓ-labels,
completing the proof.

Example. An example of a Nash flow over time with four thin flow phases is shown in Figure 3.3
on the next page. In this specific network the center arc uv builds up a queue during the time
interval [4, 5], which then decreases afterwards and depletes at time 6. This causes a depletion event
for particle ϕ = 3. Interestingly, this arc even leaves the current shortest paths network for particles
strictly greater than 6 as ℓu increases faster than ℓv.

3.6 Further Results
In the following we present some additional results for the base model.

3.6.1 Mixed Integer Programs for Thin Flow Computations
Even though Theorem 3.7 guarantees the existence of a thin flow, it does not give clear instructions
on how to compute it. In fact, it is an open question whether this computation can be done efficiently
or not. We want to present a mixed integer program that outputs a thin flow with resetting. Even
though this is not efficient theoretically, experiments showed, that a Nash flow over time in a network
of medium size can be computed rather quickly with a fast MIP-solver.
Besides the continuous variables x′ and ℓ′ we introduce two types of boolean variables. For each
e = uv ∈ E′ \ E∗ we define ae ∈ { 0, 1 } to be 1 if ℓ′

v > ρe(x′
e, ℓ′

u). Hence, in this case we require
that x′

e = 0. Note that we do not need this boolean variable for an arc e = uv ∈ E∗ since we have
ℓ′

v = ρe(x′
e, ℓ′

u) = x′

νe
regardless whether x′

e = 0 or x′
e > 0. The variable be ∈ { 0, 1 } indicates with

be = 1 for an arc e = uv ∈ E′ \ E∗ that ℓ′
u ≥ x′

e

νe
. Let B > 0 be a number that is greater than the

maximal possible value for any ℓ′
v or x′

e plus 1. Then we obtain the following constraints:

ℓ′
s = 1

r

ℓ′
v = x′

e

νe
for all e = uv ∈ E∗,

ℓ′
v ≤ x′

e

νe
+ be · B

ℓ′
v ≤ ℓ′

u + (1 − be) · B

ℓ′
v ≥ x′

e

νe
− ae · B

ℓ′
v ≥ ℓ′

u − ae · B

x′
e ≤ (1 − ae) · B

x′
e

νe
− ℓ′

u ≤ 1 − be

ℓ′
u − x′

e

νe
≤ be



for all e = uv ∈ E′ \ E∗.

The third and forth equation guarantee that ℓ′
v ≤ ρe(x′

e, ℓ′
u) = max { ℓ′

u,
x′

e

νe
} for all e ∈ E′ \ E∗ and

the fifth and sixth equation ensure that this holds with equality if ae = 0. The last three equations
implement that x′

e = 0 if ae = 1 as well as ℓ′
u ≥ x′

e

νe
for be = 1 and ℓ′

u ≤ x′
e

νe
otherwise. Together with

the region constraints

0 ≤ ℓ′
v ≤ B − 1, 0 ≤ x′

e ≤ B − 1, ae ∈ { 0, 1 } and be ∈ { 0, 1 }
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Figure 3.3: An example of a Nash flow over time with corresponding thin flows. The network inflow rate as
well as transit times and capacities (circled) are displayed on top. We have four thin flow phases,
which are depicted in the middle. Here, black arcs are active but non-resetting (at the beginning of
each phase), red arcs are resetting and gray arcs are inactive. The arc labels x′ and the node labels
ℓ′ (framed) are shown close to the arc/node. On the bottom part the resulting Nash flow over time
is displayed at various snapshots in time. Here, the small disc shows the position of particle ϕ = 6
along the top and bottom path.
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this ensures that a feasible point is a thin flow with resetting. Note that this mixed integer program
does not have any objective function and the difficulty is not to find an optimum but to find a feasible
point instead. But unfortunately, finding a feasible solution of a mixed integer program is in general
an NP-hard problem as well.

3.6.2 Uniqueness of Earliest Arrival Times
It is worth mentioning that, since the node labels of thin flows are unique, the earliest arrival time
functions coincide for all Nash flows over time that are constructed as described above. More
precisely, all earliest arrival time functions (ℓv)v∈V of Nash flows over time f with right-continuous
in- and outflow rates are the same for a given network; see [17, Theorem 6]. It is an open question
though whether this is true for all Nash flows over time on a given network. There might be the
case that for some particle ϕ the thin flow (x′(ϕ), ℓ′(ϕ)) gives a clear instruction for all particles
in [ϕ, ϕ + ε]. But instead that all those particles proceeds as this thin flow suggests, there might
additionally be a decreasing sequence of event points ϕi together with thin flows (x′(ϕi), ℓ′(ϕi)) for
all ϕ ∈ [ϕi, ϕi−1) such that ϕi ↘ ϕ. In the case that successive thin flows in this sequence differ, we
would obtain a Nash flow over time with different earliest arrival times. Such a behavior would imply
some very counter-intuitive effects, for example, some thin flows would occur an infinite number of
times within one Nash flow over time meaning that on some arcs a queue would grow and deplete
indefinitely. It would also imply that Nash flows over time are very unstable in general and that
small perturbations could have major effects. As we have not seen any example of such a butterfly
effect in Nash flows over time we conjecture that this does not happen and that the earliest arrival
times are unique in general. But since we do not have a proof for this, it remains an open question.

3.6.3 Prices of Anarchy
The question of a bound on the price of anarchy for Nash flows over time was first raised by Koch
and Skutella in [54]. They showed that in shortest paths networks the price of anarchy is 1. This
means that in networks where every arc is active for ϕ = 0 implying that the first thin flow phase
never ends, Nash flows over times are optimal and equal earliest arrival flows. In 2015, Bhaskar,
Fleischer and Anshelevich [5] characterized essentially two kinds of prices of anarchy, which we
want to briefly present here.
Suppose we have a fixed amount of flow volume A ≥ 0 at the source. If we take the ratio of
the arrival time of the last particle ϕ0 = A in the worst Nash flow over time to the completion
time of a quickest flow (or earliest arrival flow), we obtain the time price of anarchy (also called
makespan-PoA).
Similarly, we can consider a fixed time horizon H and then compare the total volume of a maximum
flow to the total volume of particles in { ϕ ∈ R≥0 | ℓt(ϕ) ≤ H } (which equals ℓ−1

t (H)) of a worst
Nash flow over time. The ratio of these two is called the evacuation price of anarchy (also
throughput-PoA).
There are even more prices of anarchy that can be considered in this model, for example, if we
consider not only the arrival of the last particle but the average arrival time of all particles. If we
compare this value of an earliest arrival flow to the average arrival time in the worst Nash flow
over time for a fixed amount of flow volume, then we obtain the total delay price of anarchy.
Analogously, we can consider the average flow amount that has arrived at t over time. The ratio of
this value of the worst Nash flow over time to an earliest arrival time up to some fixed time horizon H

is called work price of anarchy. As they share most properties with the time and evacuation price
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of anarchy, up to some constant factor, we will not include the total delay or work price of anarchy
into further consideration.
It was shown that the evacuation price of anarchy lies in Ω(|E|), and therefore, is unbounded for
arbitrary networks [54]. For this reason we focus on the time price of anarchy for the remaining part
of this section.
Bhaskar et al. showed in [5] that it is possible to obtain a bound on the time price of anarchy of

e
e−1 if we are allowed to reduce the capacities of all arcs in the network before constructing a Nash
flow over time. Note that the completion time of the quickest flow is still determined in the original
network. The key idea here is to compute a quickest flow, which is a temporary repeated flow (see
maximum flows over time on page 24), and then to reduce the capacities to the flow values of the
underlying static flow. This ensures that in the evolution of the Nash flow over time no arc will ever
leave the current shortest paths network. Instead, the Nash flow over time uses the exact same paths
as the quickest flow, but some of the paths will be delayed due to congestion. But this delay can be
bounded in these specific networks such that the time price of anarchy is bounded as desired.
Very recently, Correa, Cristi and Oosterwijk [20] extended this result and showed that the time price
of anarchy is bounded by e

e−1 whenever the network inflow rate r does not exceed the initial network
inflow rate r′ of a quickest flow (that does not build up any queues). Here, r′ equals the flow value of
the static flow underlying the corresponding temporary repeated flow. This is a massive improvement
compared to the result of Bhaskar et al. as now it is only necessary to reduce the network inflow rate
(so to say, the capacity of only one arc) instead of modifying the whole network. The key idea is to
consider the difference between the arrival time of the last particle and the completion time of a
quickest flow. It turns out that under the network inflow rate requirement we have

ℓt(ϕ̂) − OPT ≤ 1
r

·
∑

e=uv∈E

ze(ℓu(ϕ̂)),

where ϕ̂ is the last particle that is sent into the network.
By some thoughtful calculations it is possible to bound the total amount of queues seen by some
particle ϕ by the total increase of the sink arrival time during [0, ϕ]. More precisely, it holds for all
ϕ ∈ R≥0 that ∑

e=uv∈E

ze(ℓu(ϕ)) ≤ r

e
· (ℓt(ϕ) − ℓt(0)).

Using this for the last particle ϕ̂ we obtain for the time price of anarchy that

ℓt(ϕ̂)
OPT ≤ e

e − 1 .

Correa et al. also showed in the same publication that this bound is in fact tight for the family of all
considered networks with the condition on the network inflow rate.
It is natural to conjecture that e

e−1 is also the tight bound for the general case as the following quite
natural monotonicity condition would imply this.

Conjecture 3.12. Consider the same network but two different network inflow rates r1 < r2 and, for
both, a Nash flow over time f1 and f2. Then we have ℓ1

t (ϕ̂) ≥ ℓ2
t (ϕ̂).

Intuitively, this means that if we have the same network but we increase the network inflow rate
then we expect that the last particle should not arrive later than before. This seems very plausible
since the last particle enters the network strictly earlier, and intuitively, all particles in front had
more time to travel towards the sink. But as the flow dynamics of a Nash flow over time are quite
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unpredictable as soon as the thin flow phases change, this conjecture remains an open problem and
with it a bound on the time price of anarchy for general networks.

3.6.4 Long-Term Behavior

As we have seen, a sequence of thin flows is a perfect description of a Nash flow over time when we
consider it chronologically. But from an application perspective the initial traffic evolution might not
be that important and it might be more interesting to understand the long-term behavior and the
question whether the traffic dynamics will settle down to a steady state. And it would be even better
if we could skip the initial phases altogether as they are very hard to compute, and instead, directly
characterize how such a steady state could look like. Cominetti, Correa and Olver found out that
this is indeed possible and that the steady state, if it exists, can be computed efficiently by a linear
program and its dual [19]. They also proved that the question, whether such a steady state exists,
can easily be determined by considering the minimal s-t-cut (with respect to the capacities) in the
network.
To be more precise, we define the steady state as the thin flow phase with thin flow (x′, ℓ′), where
ℓ′

v = 1
r for all v ∈ V . Hence, if the Nash flow over time ever reaches such a phase then the arrival

times will all grow with a constant slope, which means that all travel times stay constant. But this
immediately implies that this phase lasts indefinitely as there cannot occur new events anymore. In
this phase all queue lengths (and therefore all waiting times) stay constant.
Cominetti et al. show that such a steady state exists and that it is reached in finite time if, and only if,
the network inflow rate does not exceed the minimal cut of the network. It is easy to see that this
is a necessary condition because, if the network inflow rate is strictly larger than the minimal cut,
the sum of the queues on all arcs of the cut must increase unlimited, and hence, there cannot be a
steady state.
The other direction is a bit more involved. The key idea is that the following potential function

Φ(ϕ) := r · (ℓt(ϕ) − ℓs(ϕ)) −
∑
e∈E

ze(ℓv(ϕ))

is strictly increasing with strictly positive derivatives unless the Nash flow over time has reached a
steady state. In addition, this potential function is bounded from above, and hence, the Nash flow
over time reaches a steady state in finite time.
It is worth noting though, that this does not mean that there are only finitely many thin flow phases
in those networks. In principle, it could be possible that there are infinitely many phases with
decreasing length and that the event points converge to some ϕ ∈ R≥0. Even though we have never
seen such an example and we conjecture that this does not happen, the question whether there are
only finitely many phases remains open.
In their publication, Cominetti et al. also proved that a steady state is a solution to the following pair
of primal-dual linear programs.
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Figure 3.4: A steady state represented by a prim-dual-solution. On the left: The thin flow x′ together with the
capacities νe (cycled) for each arc e. Note that the node labels ℓ′ are omitted as they are 1 at every
node in every steady state. On the right: The travel times dv (framed) for every node v as well as
the transit times τe and waiting times qe (if positive) for each arc e.
Note that for each arc e = uv with x′

e > 0 the condition dv ≤ du + τe + qe is tight. For the central
arc e = v1v4 we have x′

e = 0 and dv4 < dv1 + τe + qe. The steady state is not unique as all waiting
times along the s-t-cut C = { sv1, v4t } could be uniformly reduced until the condition for the
central arc v1v4 is tight (qsv1 = qv4t = 2) or, alternatively, they could be increased by an arbitrary
amount.

Primal:

min
x′∈R|E|

∑
e∈E

τe · x′
e

s.t. x′ ∈ F ,

0 ≤ x′
e ≤ νe

r
for all e ∈ E,

Dual:

max
d∈R|V |

q∈R|E|

dt −
∑
e∈E

νe

r
· qe

s.t. ds = 0,

dv ≤ du + τe + qe for all e = uv ∈ E,

qe ≥ 0 for all e ∈ E.

Here, F denotes the set of all static s-t flows of value 1 described by

∑
e∈δ+

v

x′
e(ϕ) −

∑
e∈δ−

v

x′
e(ϕ) =


0 if v ∈ V \ { s, t } ,

1 if v = s,

−1 if v = t,

and dv corresponds to the travel time from s to v, i.e., dv = ℓv(ϕ) − ℓs(ϕ). These travel times dv as
well as the queues qe are constant in a steady state.
We want to give an intuition, why an optimal solution of this prime-dual linear program corresponds
to a thin flow x′ (primal) and travel times and queues (dual) of a steady state in a Nash flow over
time; see Figure 3.4.
First of all, in a steady state the thin flow x′

e must be a static s-t-flow of value 1 that satisfies x′
e ≤ νe

r ,
since otherwise ℓ′

v = ρe(ℓ′
u, x′

e) ≥ x′
e

νe
> 1

r , which is not possible in the steady state where ℓ′
v = 1

r .
Furthermore, queues must always be non-negative and the travel time ds from s to s must be 0. For
all e = uv ∈ E Equation (3.4) implies that

dv = ℓv(ϕ) − ℓs(ϕ) ≤ ℓu(ϕ) + τe + qe(ϕ) − ℓs(ϕ) = du + τe + qe.

Additionally, we can observe that the complementary slackness corresponds to the thin flow and
Nash flow conditions: If x′

e > 0 we know that (TF3) holds, which is equivalent to the condition
that e must be active during the steady state phase, i.e., the equation above holds with equality. For
x′

e < νe

r it must be the case that there is no queue on this arc, i.e., qe = 0, since otherwise this queue
would decrease, which is not allowed for a steady state.
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Note that this linear program formulation enables us to compute steady states efficiently, but it turns
out that the queues are not uniquely defined in general. In the case that there is an s-t-cut C only
consisting of resetting arcs (or more precisely arcs with x′

e = νe

r ), we obtain a new solution, and
therefore a new steady state, by adding any a > 0 to qe for each arc e ∈ C. Note that the objective
value of the dual stays constant as dt increases by a and the sum increases by∑

e∈C

a · νe

r
= a ·

∑
e∈C

x′
e = a.

Hence, this linear program does not help us to determine which of these steady states the Nash flow
over time reaches in the long-term. For more details on this topic we refer to the publication of
Cominetti, Correa and Olver [19].
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3.7 Appendix: Technical Proofs
Lemma 3.1. For a feasible flow over time f it holds for all e ∈ E, v ∈ V and θ ∈ [0, ∞) that:

(i) qe(θ) > 0 ⇔ ze(θ + τe) > 0.

(ii) ze(θ + τe + ξ) > 0 for all ξ ∈ [0, qe(θ)).

(iii) F +
e (θ) = F −

e (Te(θ)).

(iv) For θ1 < θ2 with F +
e (θ2) − F +

e (θ1) = 0 and ze(θ2 + τe) > 0 we have Te(θ1) = Te(θ2).

(v) The functions Te are monotonically increasing.

(vi) The functions F +
e , F −

e , ze, qe and Te are almost everywhere differentiable.

(vii) For almost all θ ∈ [0, ∞) we have

q′
e(θ) =


f+

e (θ)
νe

− 1 if qe(θ) > 0,

max
{

f+
e (θ)
νe

− 1, 0
}

else.

Proof.

(i) This follows directly by the definition of qe.

(ii) By (3.3) we have that f−
e (ξ) ≤ νe almost everywhere. Since F +

e is monotonically increasing,
we obtain for 0 ≤ ξ < qe(θ) that

ze(θ+τe+ξ) = F +
e (θ+ξ)−F −

e (θ+τe+ξ) ≥ F +
e (θ)−F −

e (θ+τe)−ξ·νe > ze(θ+τe)−qe(θ)·νe = 0.

(iii) Again by (3.3) together with (ii) we obtain for almost all ξ ∈ [θ + τe, θ + τe + qe(θ)) that
f−

e (ξ) = νe. Hence,

F −
e (Te(θ)) = F −

e (θ + τe) + qe(θ) · νe = F −
e (θ + τe) + ze(θ + τe) = F +

e (θ).

(iv) Intuitively, this holds true since whether a particle enters the queue at time θ1 or θ2 does not
influence the exit time, as long as no other flow enters the queue during the interval [θ1, θ2]
and as long as the queue does not deplete during this time. Formally, this follows since

ze(ξ + τe) = F +
e (ξ) − F −

e (ξ + τe) ≥ F +
e (θ2) − F −

e (θ2 + τe) = ze(θ2 + τe) > 0,

and therefore f−
e (ξ + τe) = νe for almost all ξ ∈ [θ1, θ2]. Thus,

Te(θ1) = θ1 + τe + F +
e (θ1) − F −

e (θ1 + τe)
νe

= θ1 + τe + F +
e (θ2) − F −

e (θ2 + τe) + (θ2 − θ1) · νe

νe
= Te(θ2).
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(v) Consider two points in time θ1 < θ2. By (3.3) we have that f−
e (ξ) ≤ νe almost everywhere, and

therefore F −
e (θ2) − F −

e (θ1) ≤ (θ2 − θ1) · νe. Since F +
e is monotonically increasing we obtain

Te(θ1) = θ1 + τe + F +
e (θ1 − τe) − F −

e (θ1)
νe

≤ θ1 + τe + F +
e (θ2 − τe) − F −

e (θ2) + (θ2 − θ1) · νe

νe
= Te(θ2).

(vi) Since f+
e and f−

e are locally integrable, Lebesgue’s differentiation theorem (Theorem 2.4) yields
that the integral functions F +

e and F −
e are almost everywhere differentiable. As summation and

scaling preserve this property we have that ze, qe and Te are almost everywhere differentiable
as well.

(vii) For almost all θ ∈ [0, ∞) we have by (3.3) that

z′
e(θ + τe) = f+

e (θ) − f−
e (θ + τe) =

f+
e (θ) − νe if ze(θ + τe) > 0,

min { 0, f+
e (θ) − νe } else.

The claim follows immediately by using (i).

Lemma 3.3 (cf. Theorem 1 in [17]). Let f be a feasible flow over time, Φe := { ϕ ∈ R≥0 | e ∈ E′
ϕ }

the set of all particles for which e is active and Φc
e := R≥0 \ Φe its complement. Then the following

statements are equivalent:

(i) f is a Nash flow over time.

(ii) For each arc e = uv, it holds that f+
e (θ) = 0 for almost all θ ∈ ℓu(Φc

e).

(iii) F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)) holds for all arcs e = uv and all particles ϕ.

(iv) For every arc e = uv and almost all ϕ ∈ Φc
e we have f+

e (ℓu(ϕ)) · ℓ′
u(ϕ) = 0.

(v) For all ϕ and every arc e = uv we have: If F +
e (ℓu(ϕ) − ε) < F +

e (ℓu(ϕ)) for all ε > 0 then e ∈ E′
ϕ.

Proof. (i) ⇔ (ii): Note that the flow conservation implies that f+
e (θ) = 0 for almost all θ ∈ [0, ℓu(0))

for an arc e = uv, since flow only starts at the source at time 0 and it cannot reach u faster than ℓu(0).
Furthermore, we have ℓu(θ) ≥ θ, and therefore, ℓu is unbounded. In other words, ℓu is surjective
on [ℓu(0), ∞).
The contraposition of the Nash flow condition reads f+

e (θ) = 0 for almost all θ ∈ ℓu(Φe)c. Hence, it
is sufficient to show that for almost all ξ ∈ [ℓu(0), ∞) we have

ξ ∈ ℓu(Φe)c ⇔ ξ ∈ ℓu(Φc
e).

“⇒”: Let ϕ ∈ R≥0 with ℓu(ϕ) = ξ ∈ ℓu(Φe)c. It follows that ϕ ̸∈ Φe, and hence, ℓu(ϕ) ∈ ℓu(Φc
e).

“⇐”: Let ξ ∈ ℓu(Φc
e) and suppose ξ ̸∈ ℓu(Φe)c, i.e., there are two different particles ϕ1 ∈ Φc

e

and ϕ2 ∈ Φe with ℓu(ϕ1) = ξ = ℓu(ϕ2). Since ℓu is monotonically increasing, ℓu has to be constant
between ϕ1 and ϕ2, and therefore, there exists a rational number κξ ∈ Q with ℓu(κξ) = ξ. Since for
every point in time ξ ∈ ℓu(Φc

e) with ℓu(Φe)c there is a κξ ∈ Q with ℓu(κξ) = ξ, the set ℓu(Φc
e)\ℓu(Φe)c

is a subset of ℓu(Q), and hence, it is countable, or in other words, a null set.

(ii) ⇔ (iii): Fix an arc e = uv. For all ϕ ∈ R≥0 let Iϕ := (ϕ0, ϕ], where ϕ0 ∈ [0, ϕ] is the maximal
value with Te(ℓu(ϕ0)) = ℓv(ϕ) or 0 if no such ϕ0 exists. Note that Te(ℓu(ϕ0)) > ℓv(ϕ) in the latter
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case, since Te(ℓu(ϕ)) ≥ ℓv(ϕ) holds in general and Te ◦ ℓu is continuous. In the case that ϕ ∈ Φe we
have Iϕ = ∅.
We show for ϕ′ > 0 that

ϕ′ ∈
⋃

ϕ>0
Iϕ ⇔ ϕ′ ∈ Φc

e. (3.11)

On the one hand, we have for all ϕ′ ∈ Φc
e\ { 0 } that Te(ℓu(ϕ′)) > ℓv(ϕ′), and therefore, there is

a ϕ0 < ϕ′ which implies ϕ′ ∈ Iϕ′ . On the other hand, for all ϕ′ ∈ Iϕ we have ℓv(ϕ′) < Te(ℓu(ϕ′)),
which implies ϕ′ ∈ Φc

e, because otherwise we would have, by the monotonicity of ℓv and Te ◦ ℓu, that

Te(ℓu(ϕ′)) ≤ ℓv(ϕ′) ≤ ℓv(ϕ) ≤ Te(ℓu(ϕ0)) ≤ Te(ℓu(ϕ′)),

and therefore equality, contradicting the maximality of ϕ0. This finishes the proof of (3.11).
Hence, e is not active for all ϕ′ ∈ (ϕ0, ϕ]. Furthermore, we have F +

e (ℓu(ϕ0)) = F −
e (Te(ℓu(ϕ0)) =

F −
e (ℓv(ϕ)). Note that for ϕ0 = 0 we have 0 ≥ F −

e (ℓv(ϕ)) ≥ F +
e (Te(ℓu(ϕ0)) = 0.

Suppose (ii) is given, which means f+
e (θ) = 0 for almost all θ ∈ ℓu(Iϕ) = (ℓu(ϕ0), ℓu(ϕ)]. This yields

F +
e (ℓu(ϕ)) − F −

e (ℓv(ϕ)) = F +
e (ℓu(ϕ)) − F +

e (ℓu(ϕ0)) =
∫ ℓu(ϕ)

ℓu(ϕ0)
f+

e (θ) dθ = 0,

which shows (iii).
Conversely, suppose that (iii) holds. We have that Φc

e is a union of countably many intervals Iϕ for
which we have∫

Iϕ

f+
e (θ) dθ = F +

e (ℓu(ϕ)) − F +
e (ℓu(ϕ0)) = F +

e (ℓu(ϕ)) − F −
e (ℓv(ϕ)) = 0,

which proves (ii).

(ii) ⇔ (iv): For every arc e = uv the rule of integration by substitution with θ = ℓu(ϕ) yields∫
ℓu(Φc

e)
f+

e (θ) dθ =
∫

Φc
e

f+
e (ℓu(ϕ)) · ℓ′

u(ϕ) dϕ.

So this either equals 0 or not, which shows that (ii) is equivalent to f+
e (ℓu(ϕ)) · ℓ′

u(ϕ) = 0 for almost
all ϕ ∈ Φc

e, i.e., equivalent to (iv).

(i) ⇒ (v): Suppose we have F +
e (ℓu(ϕ) − ε) < F +

e (ℓu(ϕ)) for all ε > 0. Since F +
e (ℓu(ϕ)) > 0 the

Nash flow condition implies that e was part of the current shortest paths network at some point
in time before ϕ. Let ϕ′ ≤ ϕ be the last point in time with e ∈ E′

ϕ′ . Since e was not in the
current shortest paths network in-between ϕ′ and ϕ there is no inflow during [ℓu(ϕ′), ℓu(ϕ)], i.e.,
F +

e (ℓu(ϕ)) − F +
e (ℓu(ϕ′)) = 0. Since we assume that F +

e (ℓu(ϕ) − ε) < F +
e (ℓu(ϕ)) this implies that

ℓu(ϕ′) = ℓu(ϕ). By (3.4) and the monotonicity of ℓv we have

ℓv(ϕ) ≤ Te(ℓu(ϕ)) = Te(ℓu(ϕ′)) = ℓv(ϕ′) ≤ ℓv(ϕ).

Thus, we have equality, which means that e ∈ E′
ϕ.

(v) ⇒ (iii): For e ∈ E′
ϕ we have by Lemma 3.1 (iii) that F +

e (ℓu(ϕ)) = F −
e (Te(ℓu(ϕ))) = F −

e (ℓv(ϕ)).
For e ̸∈ E′

ϕ, let ϕ0 ∈ [0, ϕ) be minimal with F +
e (ℓu(ϕ0)) = F +

e (ℓu(ϕ)), which exists due to the
contraposition of (v). If ϕ0 > 0 we have F +

e (ℓu(ϕ0) − ε) < F +
e (ℓu(ϕ0)) for all ε > 0, and therefore,

48 Chapter 3 The Base Model



we know by (v) that e was active for ϕ0. It follows from the observation above, from the monotonicity
of F −

e and ℓv, as well as from Lemma 3.1 (iii), that

F +
e (ℓu(ϕ)) = F +

e (ℓu(ϕ0)) = F −
e (ℓv(ϕ0)) ≤ F −

e (ℓv(ϕ)) ≤ F −
e (Te(ℓu(ϕ))) = F +

e (ℓu(ϕ)).

For ϕ0 = 0 we have

0 ≤ F −
e (ℓv(ϕ)) ≤ F −

e (Te(ℓu(ϕ))) = F +
e (ℓu(ϕ)) = F +

e (ℓu(ϕ0)) = 0.

In both cases it holds that F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)), which shows (iii).

Lemma 3.4 (cf. Proposition 2 in [17]). Given a Nash flow over time the following holds for all
particles ϕ:

(i) E∗
ϕ ⊆ E′

ϕ.

(ii) E′
ϕ = { e = uv | ℓv(ϕ) ≥ ℓu(ϕ) + τe }.

(iii) E∗
ϕ = { e = uv | ℓv(ϕ) > ℓu(ϕ) + τe }.

Proof. By Lemma 3.1 (i) we have e ∈ E∗
ϕ ⇔ ze(ℓu(ϕ) + τe) > 0.

(i) Assume we are given an arc e ∈ E∗
ϕ. Either F +

e (ℓu(ϕ) − ε) < F +
e (ℓu(ϕ)) for all ε > 0, then

e ∈ E′
ϕ by Lemma 3.3 (v), or there exists a φ < ϕ, such that F +

e (ℓu(φ)) = F +
e (ℓu(ϕ)) and

ze(ℓu(φ) + τe) > 0. Using Lemma 3.1 (iv), Equation (3.4) and the monotonicity of ℓv we obtain

ℓv(ϕ) ≤ Te(ℓu(ϕ)) = Te(ℓu(φ)) = ℓv(φ) ≤ ℓv(ϕ).

Thus, we have equality, which means that e ∈ E′
ϕ.

(ii) From e ∈ E′
ϕ it follows that ℓv(ϕ) = ℓu(ϕ) + τe + qe(ℓu(ϕ)) ≥ ℓu(ϕ) + τe. The reverse inclusion

follows, since qe(ℓu(ϕ)) > 0 implies e ∈ E∗
ϕ and by (i) we obtain that e ∈ E′

ϕ. For qe(ℓu(ϕ)) = 0
we have

ℓv(ϕ) ≤ Te(ℓu(ϕ)) = ℓu(ϕ) + τe ≤ ℓv(ϕ),

and therefore equality, which shows that e is active for ϕ.

(iii) From e ∈ E∗
ϕ it follows by (i) that e is active, and therefore

ℓv(ϕ) = ℓu(ϕ) + τe + qe(ℓu(ϕ)) > ℓu(ϕ) + τe.

The reverse inclusion follows, since

ℓu(ϕ) + τe < ℓv(ϕ) ≤ Te(ℓu(ϕ)) = ℓu(ϕ) + τe + qe(ℓu(ϕ)),

and thus, qe(ℓu(ϕ)) > 0, which implies e ∈ E∗
ϕ.
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Lemma 3.9. The α-extension forms a feasible flow over time and the extended ℓ-labels coincide with the
earliest arrival times, i.e., they satisfy (3.4) for all φ ∈ [ϕ, ϕ + α).

Proof. In order to prove that the α-extension forms a flow over time we have to show that the flow
conservation is satisfied at every v ∈ V \ { t }, which is true because for all θ ∈ [ℓv(ϕ), ℓv(ϕ + α)) it
holds that

∑
e∈δ+

v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) =

∑
e∈δ+

v

x′
e

ℓ′
v

−
∑

e∈δ−
v

x′
e

ℓ′
v

=

0 if v ∈ V \ { s, t }

r if v = s.

For θ > ℓv(ϕ + α) all functions as well as the network inflow rate are 0, and therefore, the flow
conservation holds as well.
Next, we show that the outflow rates obey (3.3). For e ∈ E′

ϕ with x′
e > 0 and θ ∈ [ℓv(ϕ), ℓv(ϕ + α))

we have by (TF3) that

f−
e (θ) = x′

e

ℓ′
v

=

νe if e ∈ E∗
ϕ,

min
{

x′
e

ℓ′
u

, νe

}
if e ∈ E′

ϕ \ E∗
ϕ,

=

νe if qe(θ − τe) > 0,

min { f+
e (θ − τe), νe } if qe(θ − τe) = 0.

The last equation follows since e ∈ E∗
ϕ implies that qe(ℓu(ϕ)) > 0 and by (3.9) this is also true

during the complete thin flow phase. For arcs e ∈ E′
ϕ \ E∗

ϕ a queue builds up within the phase if,

and only if, νe <
x′

e

ℓ′
u

since we have by Lemma 3.1 (vii) that q′
e(ℓu(ϕ)) = f+

e (ℓu(ϕ))
νe

− 1 = x′
e

ℓ′
u·νe

− 1.
Furthermore, for active arcs without queues during the thin flow phase we have [ℓu(ϕ), ℓu(ϕ + α)) =
[ℓv(ϕ) − τe, ℓv(ϕ + α) − τe). For x′

e = 0 (including e /∈ E′
ϕ) we have f−

e (θ) = 0 = f+
e (θ − τe) and

qe(θ − τe) = 0 for all θ ∈ [ℓv(ϕ), ℓv(ϕ + α)). Combining all this shows that (3.3) holds for the new
phase.
For the second part we show that both equations of (3.4) hold for the extended earliest arrival times.
Given an arc e = uv ∈ E, we distinguish between three cases:

Case 1: e ∈ E\E′
ϕ.

Since α satisfies Equation (3.10) this equation is also satisfied for all ξ ∈ [0, α), and hence,

ℓv(ϕ + ξ) = ℓv(ϕ) + ξ · ℓ′
v

(3.10)
≤ ℓu(ϕ) + ξ · ℓ′

u + τe ≤ Te(ℓu(ϕ) + ξ · ℓ′
u) = Te(ℓu(ϕ + ξ)).

Case 2: e ∈ E′
ϕ\E∗

ϕ and ℓ′
u ≥ x′

e

νe
.

Since e is active we have ℓv(ϕ) = Te(ℓu(ϕ)) = ℓu(ϕ) + τe and (TF2) implies ℓ′
v ≤ ℓ′

u. There is no
queue building up since f+

e (ℓu(ϕ + ξ)) = x′
e

ℓ′
u

≤ νe, which means ze(ℓu(ϕ + ξ) + τe) = 0 for all
ξ ∈ [0, α). Combining these yields

ℓv(ϕ + ξ) = ℓv(ϕ) + ξ · ℓ′
v

(TF2)
≤ ℓu(ϕ) + τe + ξ · ℓ′

u = ℓu(ϕ + ξ) + τe = Te(ℓu(ϕ + ξ)).

Case 3: e ∈ E∗
ϕ or (e ∈ E′

ϕ and ℓ′
u <

x′
e

νe
).

Again, e is active, which means ℓv(ϕ) = Te(ℓu(ϕ)) = ℓu(ϕ) + τe + qe(ℓu(ϕ)), and additionally, e ∈ E∗
ϕ

or x′
e

ℓ′
u

> νe, together with the thin flow condition (TF2), implies that ℓ′
v ≤ x′

e

νe
. Lemma 3.1 (vii)

implies q′
e(ℓu(ϕ)) = f+

e (ℓu(ϕ))
νe

− 1 = x′
e

ℓ′
u·νe

− 1 since f+
e (ℓu(ϕ)) = x′

e

ℓ′
u

> νe in the case of e /∈ E∗
ϕ. By

rearranging we obtain x′
e

νe
= q′

e(ℓu(ϕ)) · ℓ′
u + ℓ′

u. Hence, for all ξ ∈ [0, α) we obtain with (TF2) that
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ℓv(ϕ + ξ) = ℓv(ϕ) + ξ · ℓ′
v

≤ ℓv(ϕ) + ξ · x′
e

νe

= ℓu(ϕ) + τe + qe(ℓu(ϕ)) + ξ · (q′
e(ℓu(ϕ)) · ℓ′

u + ℓ′
u)

= ℓu(ϕ + ξ) + τe + qe(ℓu(ϕ) + ξ · ℓ′
u)

= Te(ℓu(ϕ + ξ)).

This shows that there is no arc with an exit time earlier than the earliest arrival time, and therefore,
the left hand side of the second equation in (3.4) is always smaller or equal to the right hand side. It
remains to show that the equation holds with equality. For every node v ∈ V \ { s } there is at least
one arc e ∈ E′ with ℓ′

v = ρe(ℓ′
u, x′

e) due to (TF2). No matter if this arc belongs to Case 2 or Case 3
the corresponding equation holds with equality, which shows for all ξ ∈ [0, α) that

ℓv(ϕ + ξ) = min
e=uv∈E

Te(ℓu(ϕ + ξ)).

This completes the proof.
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Time-Dependent Networks 4
In the base model we assume that the network is constant and does not change over time. In
real-world traffic, however, temporary changes of the infrastructure are omnipresent. For example,
construction works can cause lane or even road closures for some time duration and school zones
reduce the speed limit depending on the time of the day. Surely, the demand, i.e., the network
inflow rate, changes drastically between night time and rush hour. Going even further, it is possible
to consider traffic lights as time-dependent capacities. We are interested in studying these time-
dependent networks because they are capable of modeling more general traffic scenarios than static
networks.
In this chapter we will extend the base model by two features: Time-dependent capacities (including
the network inflow rate) and time-dependent transit times. As they attach to different parts of the
base model, we will consider an extension including both features at the same time. The work in
this chapter was developed in collaboration with Julian Steger, who presented the results of time-
dependent capacities in his Master’s thesis [93], and Hoang Minh Pham, who wrote his Bachelor’s
thesis on Nash flows over time in networks with time-dependent transit times [42].

4.1 Arc Dynamics
Similar to the base model we consider a directed graph G = (V, E) with a source s and a sink t such
that each node is reachable by s. However, this time each arc e is equipped with a time-dependent
capacity νe : [0, ∞) → (0, ∞) and a time-dependent speed limit λe : [0, ∞) → (0, ∞), is inversely
proportional to the transit time. In addition, we consider a time-dependent network inflow rate
r : [0, ∞) → [0, ∞). We assume that the amount of flow an arc can support is unbounded and that
the network inflow is unbounded as well, i.e., for all e ∈ E we require that∫ θ

0
νe(ξ) dξ → ∞,

∫ θ

0
λe(ξ) dξ → ∞ and

∫ θ

0
r(ξ) dξ → ∞ for θ → ∞.

Later on, in order to be able to construct Nash flows over time, we will additionally assume that all
these functions are right-constant.

Time-dependent speed limits. Let us focus on the transit times first. We have to be careful how to
model the transit time changes, since we do not want to lose the following two properties of the
base model:

(i) We want FIFO on arcs, which leads to FIFO on the network for Nash flows over time.

(ii) Particles should never have the incentive to wait on a node.

In other words, we cannot simply allow piecewise-constant transit times, since this could lead to
the following case: If the transit time of an arc is high at the beginning and but gets reduced to a
lower value at some later point in time, then particles might overtake other particles on that arc.
Thus, particles might arrive earlier at the sink if they wait right in front of the arc until its transit
time drops.
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λθ = 0 λθ = 1 λθ = 2

Figure 4.1: Consider a road segment with a time-dependent speed limit that is low in the time interval [0, 1)
and large afterwards. All vehicles, independent of their position, first traverse the link slowly and
immediately speed up to the new speed limit at time 1.

Hence, we let the speed limit change over time instead. In order to keep the number of parameters
of the network as small as possible we assume that the lengths of all arcs equal 1 and, instead of a
transit time, we equip every arc e ∈ E with a time-dependent speed limit λe : [0, ∞) → (0, ∞). Thus,
a particle might traverse the first part of an arc at a different speed than the remaining distance if
the maximal speed changes midway; see Figure 4.1.

Transit times. Note that we assume the point queue of an arc to always be right before the exit of
the arc, which has not mattered much for the base model, but is important now. Hence, a particle
entering arc e at time θ immediately traverses the arc of length 1 with a time-dependent speed of λe.
The transit time τ : [0, ∞) → [0, ∞) is therefore given by

τe(θ) := min
{

τ ≥ 0

∣∣∣∣∣
∫ θ+τ

θ

λe(ξ) dξ = 1
}

.

Since we required
∫ θ

0 λe(ξ) dξ to be unbounded for θ → ∞, we always have a finite transit time. For
an illustrative example see Figure 4.2.

λe(θ) τe(θ)

θ θθ0θ0

1

τe(θ0)

τe(θ0)

Figure 4.2: From speed limits (left side) to transit times (right side). The transit time τe(θ) denotes the time
a particle needs to traverse the arc when entering at time θ. We normalize the speed limits by
assuming that all arcs have length 1, and hence, the transit time τe(θ) equals the length of an
interval starting at θ such that the area under the speed limit graph within this interval is 1.

The following lemma shows some basic properties of the transit time functions.

Lemma 4.1. For all e ∈ E and almost all θ ∈ [0, ∞) we have:

(i) The function θ 7→ θ + τe(θ) is strictly increasing.

(ii) The function τe is continuous and almost everywhere differentiable.

(iii) For almost all θ ∈ [0, ∞) we have

1 + τ ′
e(θ) = λe(θ)

λe(θ + τe(θ)) .
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Proof.

(i) Consider two points in time θ1 < θ2, then τ := θ1 − θ2 + τe(θ1) is strictly smaller than τe(θ2)
since ∫ θ2+τ

θ2

λe(ξ) dξ =
∫ θ1+τe(θ1)

θ2

λe(ξ) dξ <

∫ θ1+τe(θ1)

θ1

λe(ξ) dξ = 1,

where the strict inequality holds, since λe is always strictly positive. The last equality follows by
the definition of τe(θ1). Hence, with the definition of τe(θ2) we have θ1 + τe(θ1) < θ2 + τe(θ2).

(ii) Since θ 7→ θ + τe(θ) is monotone, Lebesgue’s theorem for the differentiability of monotone
functions (Theorem 2.5 on page 19) implies that it is almost everywhere differentiable. The
same is then true for τe. The continuity follows directly from the definition since λe is always
strictly positive.

(iii) By the definition of τe(θ) we have∫ θ+τe(θ)

0
λe(ξ) dξ −

∫ θ

0
λe(ξ) dξ = 1.

Taking the derivatives of both sides and using Lebesgue’s differentiation theorem (Theorem 2.4
on page 18) together with the chain rule, we obtain

λe(θ + τe(θ)) · (1 + τ ′
e(θ)) − λe(θ) = 0.

Since λe is always strictly positive, we get

1 + τ ′
e(θ) = λe(θ)

λe(θ + τe(θ)) .

Speed ratios. The ratio in Lemma 4.1 (iii) will be important to measure the outflow of an arc
depending on the inflow. We call γe : [0, ∞) → [0, ∞) the speed ratio of e and it is defined by

γe(θ) := λe(θ)
λe(θ + τe(θ)) = 1 + τ ′

e(θ).

Figuratively speaking, this ratio describes how much the flow rate changes under different speed
limits. If, for example, γe(θ) = 2, as depicted in Figure 4.3, this means that the speed limit was twice
as high when the particle entered the arc as it is at the moment the particle enters the queue. In this
case the flow rate is halved on its way, since the same amount of flow that entered within one time
unit, needs two time units to leave it. With the same intuition the flow rate is increased whenever
γe(θ) < 1. Note that we normally picture the flow rate by the width of the flow in the figures. But

f+(θ) f−(θ + τe(θ))

λ λ

Figure 4.3: An illustration of how the flow rate changes depending on the speed limits. On the left: As the
speed limit λ is high, the flow volume entering the arc per time unit is represented by the area of
the long rectangle. On the right: The speed limit is halved, and therefore, the same amount of flow
needs twice as much time to leave the arc (or enter the queue if there is one). Hence, if there is no
queue, the outflow rate at time τ + τe(θ) is only half the size of the inflow rate at time θ.
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for time-dependent networks this is not accurate anymore as the transit speed can vary. Hence, in
this chapter the flow rates are given by the width of the flow multiplied by the current speed limit.

Flows over time. A flow over time in a time-dependent network is, as before, a family of locally
integrable and bounded functions f = (f+

e , f−
e )e∈E that conserves flow on all arcs e:

F −
e (θ + τe(θ)) ≤ F +

e (θ) for all θ ∈ [0, ∞], (4.1)

and conserves flow at every node v ∈ V \ { t } for almost all θ ∈ [0, ∞):

∑
e∈δ+

v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) =

0 if v ∈ V \ { t } ,

r(θ) if v = s.
(4.2)

The functions F +
e , F −

e : [0, ∞) → [0, ∞) denote, again, the cumulative in- and outflow defined by

F +
e (θ) :=

∫ θ

0
f+

e (ξ) dξ and F −
e (θ) :=

∫ θ

0
f−

e (ξ) dξ.

Queues. A particle entering an arc e at time θ reaches the head of the arc at time θ + τe(θ) where it
lines up at the point queue. Thereby, the queue size ze : [0, ∞) → [0, ∞) at time θ + τe(θ) is defined
by

ze(θ + τe(θ)) := F +
e (θ) − F −

e (θ + τe(θ)).

Feasibility. We call a flow over time in a time-dependent network feasible if we have for almost all
θ ∈ [0, ∞) that

f−
e (θ + τe(θ)) =

νe(θ + τe(θ)) if ze(θ + τe(θ)) > 0,

min
{

f+
e (θ)

γe(θ) , νe(θ + τe(θ))
}

else,
(4.3)

and f−
e (θ) = 0 for almost all θ < τe(0).

Note that the outflow rate depends on the speed ratio γe(θ) if the queue is empty (see Figure 4.3).
Otherwise, the particles enter the queue, and therefore, the outflow rate equals the capacity indepen-
dent of the speed ratio. Furthermore, we observe that every arc with a positive queue always has a
positive outflow, since the capacities are required to be strictly positive. And finally, (4.3) implies
(4.1), the same way it does in the base model. This can easily be seen by considering the derivatives
of the cumulative flows whenever we have an empty queue, i.e., F −

e (θ + τe(θ)) = F +
e (θ). By (4.3)

we have that f−
e (θ + τe(θ)) · (1 + τ ′

e(θ)) ≤ f+
e (θ). Hence, Conditions (4.2) and (4.3) are sufficient

for a family of functions f = (f+
e , f−

e )e∈E to be a feasible flow over time.

Waiting times. The waiting time qe : [0, ∞) → [0, ∞) of a particle that enters the arc at time θ is
now defined by

qe(θ) := min
{

q ≥ 0

∣∣∣∣∣
∫ θ+τe(θ)+q

θ+τe(θ)
νe(ξ) dξ = ze(θ + τe(θ))

}
.

As we required
∫ θ

0 νe(ξ) dξ to be unbounded for θ → ∞ the set on the right side is never empty.
Hence, qe(θ) is well-defined and has a finite value. In addition, qe is continuous since νe is always
strictly positive.

56 Chapter 4 Time-Dependent Networks



νe(θ) qe(θ)

θ θθ0

τe(θ0)

ze

qe(θ0)

qe(θ0)

θ0 θ1 θ2Te(θ0)

Figure 4.4: Waiting times for time-dependent capacities. The waiting time of a particle θ0 (right side) is given
by the length of the interval starting at θ0 + τe(θ0) such that the area underneath the capacity
graph equals the queue size at time θ0 + τe(θ0) (left side). Note that the right boundary of the
interval equals the exit time Te(θ0). Clearly, the waiting time does not only depend on the capacity
but also on the inflow rate and the transit times (speed limits). For example, if the capacity and the
speed limit are constant but the inflow rate is 0, the waiting time will decrease with a slope of 1 as
pictured on the right side within [θ1, θ2]. But it can decline even quicker if, in addition, the transit
time is increasing at time θ, i.e., if γe(θ) > 1.

Exit times. The exit time Te : [0, ∞) → [0, ∞) denotes the time at which the particles that have
entered the arc at time θ finally leave the queue. Hence, we define

Te(θ) := θ + τe(θ) + qe(θ).

In Figure 4.4 we display an illustrative example for the definition of waiting and exit times.
With these definitions we can show the following lemma.

Lemma 4.2. For a feasible flow over time f it holds for all e ∈ E, v ∈ V and θ ∈ [0, ∞) that:

(i) qe(θ) > 0 ⇔ ze(θ + τe(θ)) > 0.

(ii) ze(θ + τe(θ) + ξ) > 0 for all ξ ∈ [0, qe(θ)).

(iii) F +
e (θ) = F −

e (Te(θ)).

(iv) For θ1 < θ2 with F +
e (θ2) − F +

e (θ1) = 0 and ze(θ2 + τe(θ2)) > 0 we have Te(θ1) = Te(θ2).

(v) The functions Te are monotonically increasing.

(vi) The functions qe and Te are continuous and almost everywhere differentiable.

(vii) For almost all θ ∈ [0, ∞) we have

T ′
e(θ) =


f+

e (θ)
νe(Te(θ)) if qe(θ) > 0,

max
{

γe(θ), f+
e (θ)

νe(Te(θ))

}
else.

The proof is very similar to the proof of Lemma 3.1 but, due to the time-dependent speed limits and
capacities, some more technical calculations are involved. The proof with all details can be found in
the appendix on page 64.
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4.2 Nash Flows Over Time
As in the base model a dynamic equilibrium is a feasible flow over time, where particles only
use current shortest paths from s to t. Note that we still assume a game with full information.
Consequently, all particles know all speed limit and capacity functions in advance and choose their
routes accordingly. Again, we start by defining the earliest arrival times and the current shortest
paths network, now for the extended model.

Earliest arrival times. The earliest arrival time functions ℓv : R≥0 → [0, ∞) are defined by

ℓv(ϕ) :=


min

{
θ ≥ 0

∣∣∣ ∫ θ

0 r(ξ) dξ = ϕ
}

for v = s,

min
e=uv∈δ−

v

Te(ℓu(ϕ)) else.
(4.4)

They are well-defined as we have finite speed limits, and hence, Te(ℓu(θ)) is strictly larger than ℓu(θ).
Note that for all v ∈ V the earliest arrival time function ℓv is monotonically increasing, continuous
and almost everywhere differentiable. This holds directly for ℓs and for v ̸= s it follows inductively,
since these properties are preserved by the composition Te ◦ ℓu and by the minimum of finitely many
functions.

Active arcs, resetting arcs and current shortest paths networks. As before we denote the active
arcs and the resetting arcs for a particle ϕ by

E′
ϕ := { e = uv ∈ E | ℓv(ϕ) = Te(ℓu(ϕ)) } and E∗

ϕ := { e = uv ∈ E | qe(ℓu(ϕ)) > 0 }

and the current shortest paths network by G′
ϕ = (V, E′

ϕ). Note that G′
ϕ is acyclic and that every

node is reachable by s within this graph.

Dynamic equilibria. Nash flows over time in time-dependent networks are now defined in the exact
same way as they were defined in the base model.

Definition 4.3 (Nash flow over time in a time-dependent network).
We call a feasible flow over time f a Nash flow over time if the following Nash flow condition
holds:

f+
e (θ) > 0 ⇒ θ ∈ ℓu(Φe) for all arcs e = uv ∈ E and almost all θ ∈ [0, ∞), (N)

where Φe := { ϕ ∈ R≥0 | e ∈ E′
ϕ } is the set of flow particles for which arc e is active.

And again, they have the same characterization.

Lemma 4.4. Let f be a feasible flow over time. Then the following statements are equivalent:

(i) f is a Nash flow over time.

(ii) For all arcs e = uv ∈ E and all particles ϕ ∈ R≥0 we have F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)).

Since the exit and the earliest arrival times have the same properties in time-dependent networks as
in the base model, this lemma follows with the exact same proof as the corresponding Lemma 3.3 in
the base model (the proof can be found on page 47).
The following lemma also transfers one-to-one from the base model.
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Lemma 4.5. Given a Nash flow over time the following holds for all particles ϕ:

(i) E∗
ϕ ⊆ E′

ϕ.

(ii) E′
ϕ = { e = uv | ℓv(ϕ) ≥ ℓu(ϕ) + τe(θ) }.

(iii) E∗
ϕ = { e = uv | ℓv(ϕ) > ℓu(ϕ) + τe(θ) }.

By replacing τe by τe(ℓu(θ)) the proof for Lemma 3.4 on page 49 also holds for time-dependent
networks.

Underlying static flows. Again, we define the underlying static flow for every ϕ ∈ R≥0 by

xe(ϕ) := F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)) for all e = uv ∈ E.

By the definition of ℓs and the integration of (4.2) we have
∫ ℓs(ϕ)

0 r(ξ) dξ = ϕ, and hence, xe(ϕ) is a
static s-t-flow of value ϕ, whereas the derivatives (x′

e(ϕ))e∈E form a static s-t-flow of value 1.

4.3 Thin Flows
In this section we want to transfer the concept of thin flows with resetting to time-dependent
networks. Since thin flows should characterize the derivatives of a Nash flow over time, we have to
consider the impact on time-dependent capacities and speed limits on these derivatives.
Consider an acyclic network G′ = (V, E′) with a source s and a sink t, such that every node is
reachable by s. Each arc is equipped with a capacity νe > 0 and a speed ratio γe > 0. Furthermore,
we have a network inflow rate of r > 0 and an arc set E∗ ⊆ E′. We obtain the following definition.

Definition 4.6 (Thin flow with resetting in a time-dependent network).
A static s-t flow (x′

e)e∈E of value 1 together with a node labeling (ℓ′
v)v∈V is a thin flow with

resetting on E∗ if:

ℓ′
s = 1

r
(TF1)

ℓ′
v = min

e=uv∈E′
ρe(ℓ′

u, x′
e) for all v ∈ V \ { s } , (TF2)

ℓ′
v = ρe(ℓ′

u, x′
e) for all e = uv ∈ E′ with x′

e > 0, (TF3)

where ρe(ℓ′
u, x′

e) :=


x′

e

νe
if e = uv ∈ E∗,

max
{

γe · ℓ′
u,

x′
e

νe

}
if e = uv ∈ E′\E∗.

The derivatives of a Nash flow over time in time-dependent networks do indeed form a thin flow
with resetting as the following theorem shows.

Theorem 4.7.
For almost all ϕ ∈ R≥0 the derivatives (x′

e(ϕ))e∈E′
ϕ

and (ℓ′
v(ϕ))v∈V of a Nash flow over time

f = (f+
e , f−

e )e∈E form a thin flow with resetting on E∗
ϕ in the current shortest paths network

G′
ϕ = (V, E′

ϕ) with network inflow rate r(ℓs(ϕ)) as well as capacities νe(ℓv(ϕ)) and speed ratios
γe(ℓu(ϕ)) for each arc e = uv ∈ E.
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Proof. Let ϕ ∈ R≥0 be a particle such that for all arcs e = uv ∈ E the derivatives of xe, ℓu, Te ◦ ℓu

and τe exist and x′
e(ϕ) = f+

e (ℓu(ϕ)) · ℓ′
u(ϕ) = f−

e (ℓv(ϕ)) · ℓ′
v(ϕ) as well as 1 + τ ′

e(ℓu(ϕ)) = γe(ℓu(ϕ)).
This is given for almost all ϕ.
By (4.4) we have

∫ ℓs(ϕ)
0 r(ξ) dξ = ϕ and taking the derivative by applying the chain rule, yields

r(ℓs(ϕ)) · ℓ′
s(ϕ) = 1, which shows (TF1).

Taking the derivative of (4.4) at time ℓu(ϕ) by using the differentiation rule for a minimum
(Lemma 2.3 on page 17) yields

ℓ′
v(ϕ) = min

e=uv∈E′
T ′

e(ℓu(ϕ)) · ℓ′
u(ϕ).

By using Lemma 4.2 (vii) we obtain

T ′
e(ℓu(ϕ)) · ℓ′

u(ϕ) =


f+

e (ℓu(ϕ))
νe(Te(ℓu(ϕ))) · ℓ′

u(ϕ) if qe(ℓu(ϕ)) > 0,

max
{

γe(ℓu(ϕ)), f+
e (ℓu(ϕ))

νe(Te(ℓu(ϕ)))

}
· ℓ′

u(ϕ) else,

 = ρe(ℓ′
u(ϕ), x′

e(ϕ)),

which shows (TF2).
Finally, in the case of f−

e (ℓv(ϕ)) · ℓ′
v(ϕ) = x′

e(ϕ) > 0 we have by (4.3) that

ℓ′
v(ϕ) = x′

e(ϕ)
f−

e (ℓv(ϕ))
=


x′

e(ϕ)
min

{
f+

e (ℓu(ϕ))
γe(ℓu(ϕ)) , νe(ℓv(ϕ))

} if qe(ℓu(ϕ)) = 0,

x′
e(ϕ)

νe(ℓv(ϕ)) else,

=

max
{

γe(ℓu(ϕ)) · ℓ′
u(ϕ), x′

e(ϕ)
νe(ℓv(ϕ))

}
if e ∈ E′

ϕ\E∗
ϕ,

x′
e(ϕ)

νe(ℓv(ϕ)) if e ∈ E∗
ϕ,

 = ρe(ℓ′
u(ϕ), x′

e(ϕ)).

This shows (TF3) and finishes the proof.

In order to construct Nash flows over time in time-dependent networks in the next section, we have
to show that there always exists a thin flow with resetting in this setting.

Theorem 4.8.
Consider an acyclic graph G′ = (V, E′) with source s, sink t, capacities νe > 0, speed ratios γe > 0
and a subset of arcs E∗ ⊆ E′, as well as a network inflow r > 0. Furthermore, suppose that every
node is reachable from s. Then there exists a thin flow ((x′

e)e∈E , (ℓ′
v)v∈V ) with resetting on E∗.

This proof works exactly as the proof for the existence of thin flows in the base model; see Theorem 3.7
on page 35.

4.4 Constructing Nash Flows Over Time
In the remaining part of this chapter we assume that for all e ∈ E the functions νe and λe as well as
the network inflow rate function r are right-constant. In order to show the existence of Nash flows
over time in time-dependent networks we use the same procedure as in the base model. We start
with the empty flow over time and expand it step by step by using a thin flow with resetting.

α-Extension. Given a restricted Nash flow over time f on [0, ϕ], i.e., a Nash flow over time where
only the particles in [0, ϕ] are considered, we obtain well-defined earliest arrival times (ℓv(ϕ))v∈V for
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particle ϕ. Hence, by Lemma 4.5 we can determine the current shortest paths network G′
ϕ = (V, E′

ϕ)
with the resetting arcs E∗

ϕ, the capacities νe(ℓv(ϕ)) and speed ratios γe(ℓu(ϕ)) for all arcs e = uv ∈ E′

as well as the network inflow rate r(ℓs(ϕ)). By Theorem 4.8 there exists a thin flow ((x′
e)e∈E′ , (ℓ′

v)v∈V )
on G′

ϕ with resetting on E∗
ϕ. For e ̸∈ E′

ϕ we set x′
e := 0. As in the base model we extend the ℓ- and

x-functions for some α > 0 by

ℓv(ϕ + ξ) := ℓv(ϕ) + ξ · ℓ′
v and xe(ϕ) := xe(ϕ) + ξ · x′

e for all ξ ∈ [0, α]

and the in- and outflow rate functions by

f+
e (θ) := x′

e

ℓ′
u

for θ ∈ [ℓu(ϕ), ℓu(ϕ + α)) and f−
e (θ) := x′

e

ℓ′
v

for θ ∈ [ℓv(ϕ), ℓv(ϕ + α)).

We call this extended flow over time α-extension. Note that ℓ′
u = 0 means that [ℓu(ϕ), ℓu(ϕ + α)) is

empty, and the same holds for ℓ′
v.

Feasible extension step size. An α-extension is a restricted Nash flow over time, which we will
prove later on, as long as the α stays within reasonable bounds. Similar to the base model we have
to ensure that resetting arcs stay resetting and non-active arcs stay non-active for all particles in
[ϕ, ϕ + α). Since the transit times may now vary over time, we have to alter the conditions of the
base model:

ℓv(ϕ) + ξ · ℓ′
v − ℓu(ϕ) − ξ · ℓ′

u > τe(ℓu(ϕ) + ξ · ℓ′
u)) for every e ∈ E∗

ϕ and all ξ ∈ [0, α), (4.5)

ℓv(ϕ) + ξ · ℓ′
v − ℓu(ϕ) − ξ · ℓ′

u < τe(ℓu(ϕ) + ξ · ℓ′
u)) for every e ∈ E \ E′

ϕ and all ξ ∈ [0, α). (4.6)

Furthermore, we need to ensure that the capacities of all active arcs and the network inflow rate do
not change within the phase:

νe(ℓv(ϕ)) = νe(ℓv(ϕ) + ξ · ℓ′
v) for every e ∈ E′

ϕ and all ξ ∈ [0, α). (4.7)

r(ℓs(ϕ)) = r(ℓs(ϕ) + ξ · ℓ′
s) for all ξ ∈ [0, α). (4.8)

Finally, the speed ratios need to stay constant for all active arcs, i.e.,

γe(ℓu(ϕ)) = γe(ℓu(ϕ) + ξ · ℓ′
u) for every e ∈ E′

ϕ and all ξ ∈ [0, α). (4.9)

We call an α > 0 feasible if it satisfies (4.5) to (4.9).

Remark 4.9. The Conditions (4.5) to (4.9) on α are sufficient to guarantee that the α-extension is
a Nash flow over time as we will show in Theorem 4.12. But it is worth noting that it is possible to
formulate more complex conditions on α in order to have longer thin flow phases by skipping events
that do not change the thin flow. For example, Equation (4.9) only needs to hold for arcs that stay
active during the phase, i.e., arcs for which (TF3) is satisfied. But if we restrict it to those, we need to
ensure that active arcs leaving the current shortest path network immediately, also satisfy Equation (4.6)
for all ξ ∈ (0, α) as these arcs might become active again within the same phase due to a change of
the speed ratio. As these improved conditions are more complicated to state we will only consider the
conditions stated above in this thesis. But for an actual implementation there is room for improvement as
a reduction in the number of the costly thin flow computations can speed up the algorithm significantly.

Lemma 4.10. Given a restricted Nash flow over time f on [0, ϕ] then for right-constant capacities and
speed limits there always exists a feasible α > 0.

4.4 Constructing Nash Flows Over Time 61



Proof. By Lemma 4.5 we have that ℓv(ϕ) − ℓu(ϕ) > τe(ϕ) for all e ∈ E∗
ϕ and ℓv(ϕ) − ℓu(ϕ) < τe(ϕ)

for all e ∈ E \ E′
ϕ. Since τe is continuous there is an α1 > 0 such that (4.5) and (4.6) are satisfied for

all ξ ∈ [0, α1). Since νe, r and λe are right-constant so is γe, and hence, there is an α2 > 0 such that
(4.7), (4.8) and (4.9) are fulfilled for all ξ ∈ [0, α2). Clearly, α := min { α1, α2 } > 0 is feasible.

For the maximal feasible α we call the interval [ϕ, ϕ + α) a thin flow phase.

Lemma 4.11. An α-extension is a feasible flow over time and the extended ℓ-labels coincide with the
earliest arrival times, i.e., they satisfy Equation (4.4) for all φ ∈ [ϕ, ϕ + α).

The proof is similar to the proof of the corresponding Lemma 3.9 in the base model, but the time-
dependent transit times and capacities make it a bit more involved. It can be found in the appendix
on page 66.
The final step is to show that an α-extension is a restricted Nash flow over time on [0, ϕ + α) and
that we can continue this process up to ∞.

Theorem 4.12.
Given a restricted Nash flow over time f = (f+

e , f−
e )e∈E on [0, ϕ) in a time-dependent network and

a feasible α > 0 then the α-extension is a restricted Nash flow over time on [0, ϕ + α).

Theorem 4.13.
There exists a Nash flow over time in every time-dependent network with right-constant speed limits,
capacities and network inflow rates.

The proofs of both theorems are exactly the same as the proofs for the corresponding Theorems 3.10
and 3.11 on page 38.

Example. An example of a Nash flow over time in a time-dependent network together with the
corresponding thin flows is shown in Figure 4.5 on the next page.
As displayed at the top the capacity of arc su drops from 2 to 1 at time 8 and, at the same time, the
speed limit of arc vt decreases from 1

2 to 1
6 . The first event for particle 4 is due to a change of the

speed ratio leading to an increase of ℓ′
t. For particle 6, the top path becomes active and is taken by

all following flow as particles on arc vt are still slowed down. For particle 8, the speed ratio at arc vt

changes back to 1 but, as this arc is inactive, this does not change anything. Particle 12 is the first to
experience the reduced capacity on arc su. The corresponding queue of this arc increases until the
bottom path becomes active. This happens in two steps: first only the path up to node v becomes
active for ϕ = 16, and finally, the complete path is active from ϕ = 20 onwards.
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Figure 4.5: A Nash flow over time with corresponding thin flows in a time-dependent network. On the top: The
network properties before time 8 (left side) and after time 8 (right side). In the middle: There are
seven thin flow phases. Note that the third and forth phase (both depicted in the same network) are
almost identical and only the speed ratio of arc vt changes, which does not influence the thin flow
at all. At the bottom: Some key snapshots in time of the resulting Nash flow over time. The current
speed limit of arc vt is visualized by the length of the green arrow and, from time 8 onwards, the
reduced capacity on arc su is displayed by a red bottle-neck.
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4.5 Appendix: Technical Proofs
Lemma 4.2. For a feasible flow over time f it holds for all e ∈ E, v ∈ V and θ ∈ [0, ∞) that:

(i) qe(θ) > 0 ⇔ ze(θ + τe(θ)) > 0.

(ii) ze(θ + τe(θ) + ξ) > 0 for all ξ ∈ [0, qe(θ)).

(iii) F +
e (θ) = F −

e (Te(θ)).

(iv) For θ1 < θ2 with F +
e (θ2) − F +

e (θ1) = 0 and ze(θ2 + τe(θ2)) > 0 we have Te(θ1) = Te(θ2).

(v) The functions Te are monotonically increasing.

(vi) The functions qe and Te are continuous and almost everywhere differentiable.

(vii) For almost all θ ∈ [0, ∞) we have

T ′
e(θ) =


f+

e (θ)
νe(Te(θ)) if qe(θ) > 0,

max
{

γe(θ), f+
e (θ)

νe(Te(θ))

}
else.

Proof.

(i) This follows directly from the definition of the waiting time qe.

(ii) By (4.3) we have that f−
e (ξ) ≤ νe(ξ) almost everywhere. Hence, we have by definition that

qe(θ) is the minimal value such that∫ θ+τe(θ)+qe(θ)

θ+τe(θ)
νe(ξ) dξ = ze(θ + τe(θ)).

Thus, we obtain for ξ ∈ [0, qe(θ)) that

F −
e (θ + τe(θ) + ξ) − F −

e (θ + τe(θ)) =
∫ θ+τe(θ)+ξ

θ+τe(θ)
f−

e (ξ) dξ

≤
∫ θ+τe(θ)+ξ

θ+τe(θ)
νe(ξ) dξ

< ze(θ + τe(θ))

= F +
e (θ) − F −

e (θ + τe(θ)).

Or in short: F +
e (θ) − F −

e (θ + τe(θ) + ξ) > 0 for ξ ∈ [0, qe(θ)). Since F +
e is monotonically

increasing we obtain for all ξ ∈ [0, qe(θ)) that

ze(θ + τe(θ) + ξ) = F +
e (θ + ξ) − F −

e (θ + τe(θ) + ξ) ≥ F +
e (θ) − F −

e (θ + τe(θ) + ξ) > 0.
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(iii) Again by (4.3) together with (ii) we obtain for almost all ξ ∈ [θ + τe(θ), θ + τe(θ) + qe(θ)) that
f−

e (ξ) = νe(ξ). By the definition of qe we have

F −
e (θ + τe(θ) + qe(θ)) − F −

e (θ + τe(θ)) =
∫ θ+τe(θ)+qe(θ)

θ+τe(θ)
f−

e (ξ) dξ

=
∫ θ+τe(θ)+qe(θ)

θ+τe(θ)
νe(ξ) dξ

= ze(θ + τe(θ))

= F +
e (θ) − F −

e (θ + τe(θ)).

Hence, F −
e (Te(θ)) = F +

e (θ).

(iv) Since F +
e (θ1) = F +

e (θ2) we obtain with the monotonicity of F −
e and Lemma 4.1 (i) that

ze(ξ + τe(ξ)) = F +
e (ξ) − F −

e (ξ + τe(ξ)) ≥ F +
e (θ2) − F −

e (θ2 + τe(θ2)) = ze(θ2 + τe(θ2)) > 0,

and therefore, (4.3) provides f−
e (ξ) = νe(ξ) for almost all ξ ∈ [θ1 + τe(θ1), θ2 + τe(θ2)].

Thus, the definition of qe implies that qe(θ1) equals

min
{

q ≥ 0

∣∣∣∣∣
∫ θ2+τe(θ2)

θ1+τe(θ1)
f−

e (ξ) dξ +
∫ θ1+τe(θ1)+q

θ2+τe(θ2)
νe(ξ) dξ = F +

e (θ1) − F −
e (θ1 + τe(θ1))

}

= min
{

p ≥ 0

∣∣∣∣∣
∫ θ2+τe(θ2)+p

θ2+τe(θ2)
νe(ξ) dξ = F +

e (θ2)−F −
e (θ2+τe(θ2))

}
+θ2+τe(θ2)−θ1−τe(θ1)

= qe(θ2) + θ2 + τe(θ2) − θ1 − τe(θ1).

Here, the first equation can be obtained by substituting q by p + θ2 + τe(θ2) − θ1 − τe(θ1). Note
that the condition p ≥ 0 is always satisfied since the right hand side F +

e (θ2) − F −
e (θ2 + τe(θ2))

equals ze(θ2 + τe(θ2)) and is therefore strictly positive by assumption. Hence, we obtain

Te(θ1) = θ1 + τe(θ1) + qe(θ1) = θ2 + τe(θ2) + qe(θ2) = Te(θ2).

(v) Considering two points in time θ1 < θ2, we show that Te(θ1) ≤ Te(θ2). Since F +
e is monotoni-

cally increasing, (iii) implies that

F −
e (Te(θ2)) = F +

e (θ2) ≥ F +
e (θ1) = F −

e (Te(θ1)). (4.10)

If this holds with strict inequality, we obtain by monotonicity of F −
e that Te(θ1) < Te(θ2).

If (4.10) holds with equality we have two cases. If ze(θ2 + τe(θ2)) > 0, (iv) states that
Te(θ1) = Te(θ2). If ze(θ2 + τe(θ2)) = 0, (ii) applied to θ1 implies that ξ := θ2 + τe(θ2) − θ1 −
τe(θ1) ̸∈ [0, qe(θ1)). Since ξ ≥ 0 by Lemma 4.1 (i) we have ξ ≥ qe(θ1), and thus,

Te(θ2) (i)= θ2 + τe(θ2) ≥ θ1 + τe(θ1) + qe(θ1) = Te(θ1).

(vi) The continuity of qe follows since νe is always strictly positive and ze is continuous, as it is the
difference of two continuous functions. Finally, Te is continuous since it is the sum of three
continuous functions.
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By (v) the function Te is monotonically increasing for every e ∈ E, and hence, Lebesgue’s
theorem for the differentiability of monotone functions (Theorem 2.5 on page 19) states that
Te is almost everywhere differentiable. Since θ 7→ θ + τe(θ) is monotone this also holds for τe

since it is the difference of two almost everywhere differentiable functions. As a sum of almost
everywhere differentiable functions, qe(θ) = Te(θ) − τe(θ) − θ has this property as well.

(vii) The definition of qe(θ) states that∫ Te(θ)

0
νe(ξ) dξ −

∫ θ+τe(θ)

0
νe(ξ) dξ = ze(θ + τe(θ)) = F +

e (θ) − F −
e (θ + τe(θ)).

Taking the derivative on both sides we obtain by using the chain rule that

νe(Te(θ)) · T ′
e(θ) − νe(θ + τe(θ)) · (1 + τ ′

e(θ)) = f+
e (θ) − f−

e (θ + τe(θ)) · (1 + τ ′
e(θ)).

If qe(θ) > 0 we have by (4.3) that f−
e (θ + τe(θ)) = νe(θ + τe(θ)), and therefore, dividing by

νe(Te(θ)) (which is strictly positive by assumption) yields

T ′
e(θ) = f+

e (θ)
νe(Te(θ)) .

For qe(θ) = 0 we have f−
e (θ + τe(θ)) = min

{
f+

e (θ)
γe(θ) , νe(θ + τe(θ))

}
and Te(θ) = θ + τe(θ).

Hence, dividing by νe(θ + τe(θ)) = νe(Te(θ)) and using Lemma 4.1 (iii) provides

T ′
e(θ) = γe(θ) + f+

e (θ)
νe(Te(θ)) − min

{
f+

e (θ)
γe(θ) , νe(Te(θ))

}
· γe(θ)

νe(Te(θ))

= max
{

γe(θ), f+
e (θ)

νe(Te(θ))

}
,

which finishes the proof.

Lemma 4.11. An α-extension is a feasible flow over time and the extended ℓ-labels coincide with the
earliest arrival times, i.e., they satisfy Equation (4.4) for all φ ∈ [ϕ, ϕ + α).

Proof. Flow conservation on nodes, Equation (4.2), is satisfied since for all θ ∈ [ℓv(ϕ), ℓv(ϕ + α)) we
have

∑
e∈δ+(v)

f+
e (θ) −

∑
e∈δ−(v)

f−
e (θ) =

∑
e∈δ+(v)

x′
e

ℓ′
v

−
∑

e∈δ−(v)

x′
e

ℓ′
v

=

0 if v ∈ V \ { s, t }

r(ℓs(ϕ)) (4.8)= θ if v = s.

Next, we show that the feasibility condition (4.3) is satisfied. For this we first consider arcs e with
x′

e > 0, which implies e ∈ E′
ϕ. By (TF3) we have that ℓ′

v ≥ γe(ℓu(ϕ)) · ℓ′
u. Since γ is constant during

the thin flow phase, so is τ ′, and therefore, we have for all ξ ∈ [0, α) that

ℓv(ϕ + ξ) = ℓv(ϕ) + ξ · ℓ′
v

≥ ℓv(ϕ) + ξ · γe(ℓu(ϕ)) · ℓ′
u

≥ ℓu(ϕ) + τe(ℓu(ϕ)) + ξ · (1 + τ ′
e(ℓu(ϕ)) · ℓ′

u

= ℓu(ϕ + ξ) + τe(ℓu(ϕ + ξ)).

In other words, e stays active during the thin flow phase.
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We consider the outflow rate at time θ+τe(θ) for θ ∈ [ℓu(ϕ), ℓu(ϕ+α)). In the case of θ+τe(θ) < ℓv(ϕ)
the feasibility condition follows from prior phases. Otherwise, θ + τe(θ) ∈ [ℓv(ϕ), ℓv(ϕ + α)), and
therefore,

f−
e (θ + τe(θ)) = x′

e

ℓ′
v

(TF3)= x′
e

ρe(ℓ′
u, x′

e) =

min
{

x′
e

γe(ℓu(ϕ))·ℓ′
u

, νe(ℓv(ϕ))
}

if e ∈ E′
ϕ \ E∗

ϕ,

νe(ℓv(ϕ)) else,

=

min
{

f+
e (θ)

γe(θ) , νe(θ + τe(θ))
}

if qe(θ) = 0,

νe(θ + τe(θ)) else.

In the case that x′
e = 0 we either have ℓ′

v = 0, but then there is nothing to show since the interval
[ℓv(ϕ), ℓv(ϕ + α)) would be empty, or ℓ′

v > 0, which means by (TF2) that either e is not active, or
it is active but non-resetting. In both cases we have qe(ℓu(θ)) = 0 and since f+

e (ℓu(θ)) = 0 for all
θ ∈ [ℓu(ϕ, ℓu(ϕ + α)) the queue stays empty during this phase. (4.3) follows since f−

e (θ + τe(θ)) =
x′

e

ℓ′
v

= 0 = f+
e (θ) holds for all θ ∈ [ℓu(ϕ, ℓu(ϕ + α)). Altogether, we showed that the α-extension is

indeed a feasible flow over time.

It remains to show that Equation (4.4) holds, which implies that the extended ℓ-functions denote the
earliest arrival times. First of all we have∫ ℓs(ϕ+ξ)

0
r(ξ) dξ = ϕ +

∫ ℓs(ϕ+ξ)

ℓs(ϕ)
r(ξ) dξ = ϕ + r(ℓs(ϕ)) · ℓ′

s · ξ = ϕ + ξ.

Since r is always strictly positive, ℓs(ϕ) is the minimal value with this property, which shows (4.4)
for v = s. For v ̸= s we distinguish between three cases for every given arc e = uv ∈ E.

Case 1: e ∈ E\E′
ϕ.

Since α satisfies (4.6) it is satisfied for all ξ ∈ [0, α), and hence,

ℓv(ϕ+ξ) = ℓv(ϕ)+ξ ·ℓ′
v

(4.6)
≤ ℓu(ϕ)+ξ ·ℓ′

u +τe(ℓu(ϕ)+ξ ·ℓ′
u) ≤ ℓu(ϕ+ξ)+τe(ℓu(ϕ+ξ)) ≤ Te(ℓu(ϕ+ξ)).

Case 2: e ∈ E′
ϕ\E∗

ϕ and γe(ℓu(ϕ)) · ℓ′
u ≥ x′

e

νe(ℓv(ϕ)) .
Since e is active we have ℓv(ϕ) = Te(ℓu(ϕ)) = ℓu(ϕ)+ τe(ℓu(ϕ)) and (TF2) implies ℓ′

v ≤ γe(ℓu(ϕ)) · ℓ′
u.

There is no queue building up since f+
e (ℓu(ϕ + ξ)) = x′

e

ℓ′
u

≤ νe(ℓv(ϕ)), which means ze(ℓu(ϕ + ξ) +
τe(ℓu(ϕ))) = 0 for all ξ ∈ (0, α]. Combining these yields

ℓv(ϕ + ξ)
(TF2)
≤ ℓv(ϕ) + ξ · γe(ℓu(ϕ)) · ℓ′

u = ℓu(ϕ) + τe(ℓu(ϕ)) + ξ · (1 + τ ′
e(ℓu(ϕ)) · ℓ′

u

= ℓu(ϕ + ξ) + τe(ℓu(ϕ + ξ))

= Te(ℓu(ϕ + ξ)).

Case 3: e ∈ E∗
ϕ or

(
e ∈ E′

ϕ and γe(ℓu(ϕ)) · ℓ′
u <

x′
e

νe(ℓv(ϕ))

)
.

Again, e is active, which means ℓv(ϕ) = Te(ℓu(ϕ)). We have ρe(ℓ′
u, x′

e) = x′
e

νe(ℓv(ϕ)) , and hence, (TF2)

implies ℓ′
v ≤ x′

e

νe(ℓv(ϕ)) . Lemma 4.2 (vii) yields

T ′
e(ℓu(ϕ)) = f+

e (ℓu(ϕ))
νe(ℓv(ϕ)) = x′

e

ℓ′
u · νe(ℓv(ϕ))

since either qe(ℓu(ϕ)) > 0 (if e ∈ E∗) or, in the case of e /∈ E∗
ϕ, we have
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f+
e (ℓu(ϕ))

νe(ℓv(ϕ)) = x′
e

ℓ′
u · νe(ℓv(ϕ)) > γe(ℓu(ϕ)).

Hence, for all ξ ∈ (0, α] we obtain

ℓv(ϕ + ξ) (TF2)= ℓv(ϕ) + ξ · ℓ′
v ≤ ℓv(ϕ) + ξ · x′

e

νe
= Te(ℓu(ϕ)) + ξ · T ′

e(ℓu(ϕ)) · ℓ′
v = Te(ℓu(ϕ + ξ)).

This shows that there is no arc with an exit time earlier than the earliest arrival time, and therefore,
the left hand side of (4.4) is always smaller or equal to the right hand side.
It remains to show that the equation holds with equality. For every node v ∈ V \ { s } there is at least
one arc e ∈ E′ with ℓ′

v = ρe(ℓ′
u, x′

e) in the thin flow due to (TF2). No matter if this arc belongs to
Case 2 or Case 3 the corresponding equation holds with equality, which shows for all ξ ∈ (0, α] that

ℓv(ϕ + ξ) = min
e=uv∈E

Te(ℓu(ϕ + ξ)).

This shows that (4.4) is also satisfied for v ̸= s, which completes the proof.
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Multiple Commodities 5
This chapter is dedicated to networks with multiple sources and multiple sinks and the adaptation
of the base model in order to handle multiple commodities. Some parts of this chapter, especially
Sections 5.2 and 5.3, are based on the collaboration with Martin Skutella published in 2018 [86].

Multiple origin-destination-pairs. Nash flows over time are mainly motivated by road traffic, where,
in general every road user has his or her own origin and destination. This naturally leads to the
consideration of flows over time consisting of multiple commodities J , each of them with its own
origin-destination-pair (sj , tj) and its own network inflow rate rj ≥ 0; see Figure 5.1. At every
origin sj , a flow enters the network with rate rj during some interval Ij and every infinitesimally
small particle of this flow has the goal to reach destination tj as early as possible, while considering
the queuing delays on the paths. Every commodity is modeled by time-dependent in- and outflow
rates for every arc that must satisfy flow conservation at every node individually. Then, a dynamic
equilibrium consists of a multi-commodity flow over time, where each particle chooses a convex
combination of fastest routes from sj to tj as strategy. Cominetti, Correa and Larré proved that
these dynamic equilibria exist by using infinite-dimensional variational inequalities for a path-
based formulation of these flows over time [17]. Unfortunately, the techniques presented in the
previous chapters for single commodity networks are not sufficient for analyzing or algorithmically
constructing such multi-commodity Nash flows over time. The fact that each commodity has different
earliest arrival times is the main difficulty as this causes cyclic interdependencies. Each particle
entering the network has to take into account not only all flow that previously entered the network,
but also flow entering the network in the future. This challenging situation is further specified in
the example in Figure 5.1. Nonetheless, in Section 5.1 we will present some significant structural
results for such multi-commodity Nash flows over time and we will give an arc-based proof of their

t2 s3

v4v3

s1

t3

v1

s2

v2

t1

t2 s3

v4v3

s1

t3

v1

s2

v2

t1

Figure 5.1: On the left: A multi-commodity network with three commodities. On the right: The particles of
each commodity can choose from at least two paths. Each path overlaps with possible paths of
other commodities. Hence, the waiting times a particle experiences on these links do not only
depend on the flow in front of the same commodity but also on the route choices of the flows of
other commodities, which may even enter the network at a later time than the particle itself. For
example, the waiting time that particle ϕ = 0 of commodity 1 experiences on arc s3t1, depends on
the flow of commodity 3 entering at a later point in time. Their decisions, however, depend on the
congestion on arc s1v1, which in turn might be congested by flow of commodity 1 that has entered
later than particle ϕ.
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existence. In order to do so we apply the techniques used in [17] to a new class of multi-commodity
thin flows with resetting.
Since we were not able to show how to construct multi-commodity Nash flows over time without
some strong existence theorem for infinite-dimensional variational inequalities, we consider, in
addition, two special cases that can be reduced to the single-commodity setting. Networks in
which all commodities share the same destination are discussed in Section 5.2 and the case that
all commodities share the same origin is considered in Section 5.3. For these two special cases we
essentially use some advanced super-source and super-sink constructions in order to show how to
construct a Nash flow over time iteratively.

5.1 Multi-Commodity Flows Over Time
In the first part of this section we specify a proper multi-commodity flow over time model and define
dynamic equilibria in this setting. Afterwards, we consider multi-commodity thin flows and prove
that the derivatives of multi-commodity Nash flows over time again satisfy these flow conditions.
Finally, following the lines of [17], we show the existence of dynamic equilibria in a multi-commodity
setting by using an existence theorem for infinite-dimensional variational inequalities.
Note that this time we consider inflow rates with time horizons, i.e., each commodity only sends flow
into the network within a finite time interval. This is a necessary condition as in the multi-commodity
setting particles in the future can influence particles from the past.

5.1.1 Flow Dynamics
As before we consider a directed graph G = (V, E), where each arc e is equipped with a transit
time τe ≥ 0 and a capacity νe > 0. This time, however, we also have a finite set of commodities J ,
each of them equipped with an origin-destination-pair (sj , tj) ∈ V 2 and with a network inflow rate
rj > 0 as well as a finite time interval Ij . We assume that there exists at least one sj-tj-path for every
j ∈ J and for Section 5.1 we assume that all Ij = [aj , bj) are finite intervals.

Multi-commodity flows over time. For a multi-commodity flow over time we consider a family of
locally integrable and bounded functions f = (f+

j,e, f−
j,e)j∈J,e∈E where f+

j,e(θ) denotes the inflow rate
of commodity j into arc e at time θ and f−

j,e(θ) denotes the respective outflow rate. The cumulative
in- and outflow for each commodity j and each arc e is defined by

F +
j,e(θ) :=

∫ θ

0
f+

j,e(ξ) dξ and F −
j,e(θ) :=

∫ θ

0
f−

j,e(ξ) dξ,

and the total (cumulative) in- and outflow rates at each point in time θ are given by

f+
e (θ) :=

∑
j∈J

f+
j,e(θ), f−

e (θ) :=
∑
j∈J

f−
j,e(θ), F +

e (θ) :=
∑
j∈J

F +
j,e(θ) and F −

e (θ) :=
∑
j∈J

F −
j,e(θ).

Flow conservation. We say f is a multi-commodity flow over time if every commodity j ∈ J

conserves flow on every arc e:

F −
j,e(θ + τe) ≤ F +

j,e(θ) for all θ ∈ [0, ∞), (5.1)
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ϑ θ = Te(ϑ)

f+1,e(ϑ)

f+2,e(ϑ)

f+3,e(ϑ)

f−1,e(θ)

f−2,e(θ)

f−3,e(θ)

Figure 5.2: Inflow at time ϑ (left side) and outflow at time θ = Te(ϑ) (right side) of three commodities. We
require the flow to merge perfectly, which means that the proportions of each commodity are
conserved on an arc even if the flow is stretched or compressed.

and conserves flow at every node v ∈ V \ { tj }:

∑
e∈δ+

v

f+
j,e(θ) −

∑
e∈δ−

v

f−
j,e(θ) =

0 if v ∈ V \ { sj } or θ /∈ Ij

rj if v = sj and θ ∈ Ij ,
for almost all θ ∈ [0, ∞). (5.2)

Queues, waiting times and exit times. We only consider the total flow for the sizes of the queues.
Hence, the queue sizes, waiting times and exit times are given by

ze(θ) := F +
e (θ − τe) − F −

e (θ), qe(θ) := ze(θ + τe)
νe

and Te(θ) := θ + τe + qe(θ).

Feasibility. A multi-commodity flow over time f is feasible if the total outflow rate follows the
same flow dynamic as for a feasible single-commodity flow over time, i.e., if

f−
e (θ) =

νe if ze(θ) > 0,

min { f+
e (θ − τe), νe } if ze(θ) = 0,

for almost all θ ∈ [0, ∞). (5.3)

Furthermore, the amount of flow of a commodity j that leaves an arc e at time θ is determined by its
fraction of the total inflow rate at time ϑ when this particle entered the arc. In other words,

f−
j,e(θ) =

f−
e (θ) · f+

j,e
(ϑ)

f+
e (ϑ) if f+

e (ϑ) > 0,

0 else,
(5.4)

where ϑ = min { ξ ≤ θ | Te(ξ) = θ } is the earliest point in time a particle can enter arc e in order to
leave it at time θ. This equation ensures that arcs preserve the proportion of commodities within
the flow as depicted in Figure 5.2. In particular, queues follow the first-in-first-out (FIFO) principle,
which means that particles cannot overtake others within the queues.
Note that the total flow over time (f+

e , f−
e ) is a feasible flow over time with respect to the base

model, and therefore, Lemma 3.1 holds. Additionally, the follow property holds for every commodity
separately.

Lemma 5.1. For a feasible multi-commodity flow over time f we have for every arc e ∈ E, every
commodity j ∈ J and all θ ∈ [0, ∞) that

F +
j,e(θ) = F −

j,e(Te(θ)).
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Proof. By Lemma 3.1 (iii) we have that F +
e (ξ) = F −

e (Te(ξ)). Taking the derivative yields that
f+

e (ξ) = f−
e (Te(ξ)) · T ′

e(ξ) for almost all ξ ∈ [0, θ]. Hence, for f+
e (ξ) > 0 we obtain

d
dξ

F −
j,e(Te(ξ)) = f−

j,e(Te(ξ)) · T ′
e(ξ) (5.4)= f−

e (Te(ξ)) ·
f+

j,e(ξ)
f+

e (ξ)
· T ′

e(ξ) = f+
j,e(ξ). (5.5)

In the case of f+
e (ξ) = 0 both sides equal 0.

Taking the integral over [0, θ] of (5.5) yields F −
j,e(Te(θ)) = F +

j,e(θ) since F −
j,e(Te(0)) = F +

j,e(0) = 0.

Note that (5.1) is not used in the proof. Since F +
j,e(θ) = F −

j,e(Te(θ)) implies flow conservation on
arcs, we can again drop Condition (5.1) for a feasible multi-commodity flow over time.

5.1.2 Multi-Commodity Nash Flows Over Time
In order to define dynamic equilibria in this setting we have to transfer the concept of current shortest
paths networks and resetting arcs to the multi-commodity case.

Earliest arrival times. Since every flow commodity has its own origin we need to define earliest
arrival time functions for every commodity separately. For a given flow over time f let ℓj,v : R →
[0, ∞) be the earliest time a particle of commodity j can arrive at v. More precisely, we define the
earliest arrival time for commodity j ∈ J by

ℓj,sj (ϕ) := ϕ

rj
+ aj ,

ℓj,v(ϕ) := min
e=uv∈E

Te(ℓj,u(ϕ)) for v ∈ V \ { sj } .
(5.6)

The flow of a commodity can be seen as an infinite long area of width 1, which means that the flow
volume of an interval [a, b] ⊆ R equals b − a (more general: the volume of a measurable subset of R
is given by its Lebesgue-measure). Furthermore, only the particles in Kj := [0, (bj − aj) · rj) enters
the network within the time interval Ij .
For technical reasons we also define the earliest arrival times for particles ϕ ̸∈ Kj by setting qe(θ) = 0
for all θ < 0. This way the earliest arrival time functions are surjective on R.

Active and resetting arcs. We say an arc e = uv is active for particle ϕ and commodity j if

ℓj,v(ϕ) = Te(ℓj,u(ϕ))

and we denote the set of all active arcs for ϕ and j by

E′
j,ϕ := { e = uv ∈ E | ℓj,v(ϕ) = ℓj,u(ϕ) + τe + qe(ℓj,u(ϕ)) } .

The graph Gj,ϕ := (V, E′
j,ϕ) is called the current shortest paths network of particle ϕ and commodity

j. Furthermore, we define

E∗
j,ϕ := { e = uv ∈ E | qe(ℓj,u(ϕ)) > 0 }

to be the resetting arcs for particle ϕ and commodity j.
Note that in this setting there might be arcs that are resetting but not active for a particle of some
commodity.
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Dynamic equilibria. We can now transfer the definition of Nash flows over time to this multi-
commodity setting.

Definition 5.2 (Multi-commodity Nash flow over time).
A feasible multi-commodity flow over time f is a multi-commodity Nash flow over time if

f+
j,e(θ) > 0 ⇒ θ ∈ ℓj,u(Φj,e) for all e = uv ∈ E, j ∈ J and almost all θ ∈ [0, ∞), (mcN)

where Φj,e := { ϕ ∈ R≥0 | e ∈ E′
j,ϕ } is the set of flow particles of commodity j for which arc e

is active.

We can characterize Nash flows over time in the multi-commodity setting as follows.

Lemma 5.3. For a feasible multi-commodity flow over time f the following statements are equivalent:

(i) f is a multi-commodity Nash flow over time.

(ii) F +
j,e(ℓj,u(ϕ)) = F −

j,e(ℓj,v(ϕ)) for all e = uv, j ∈ J and all ϕ ∈ R≥0.

The proof of this lemma is similar to the proof of the corresponding part in Lemma 3.3. It can be
found in the appendix on page 89.
In a multi-commodity Nash flow over time the waiting times, and therefore the active and resetting
arcs, are completely characterized by the earliest arrival time functions.

Lemma 5.4. Given a multi-commodity Nash flow over time f with arrival time functions (ℓj,v)j∈J,v∈V ,
we have for all arcs e = uv ∈ E and all θ ∈ [0, ∞) that

qe(θ) = max
j∈J

(max { ℓj,v(ϕj) − ℓj,u(ϕj) − τe, 0 }) with ϕj := min { ϕ ∈ R≥0 | ℓj,u(ϕ) = θ } .

Proof. If qe(θ) = 0 we have by (5.6) for all commodities j that

ℓj,v(ϕj) ≤ ℓj,u(ϕj) + τe + qe(ℓj,u(ϕj)) = ℓj,u(ϕj) + τe.

For qe(θ) > 0 we show that there has to be at least one commodity j ∈ J for which e is active for
particle ϕj . Let j be the commodity for which e was active at the latest point in time before θ, i.e.,

j := arg max
i∈J

ℓi,u(φi) with φi := max { ξ ≤ ϕj | e ∈ E′
i,ξ } .

Since no flow was sent into e between ℓj,u(φj) and θ = ℓj,u(ϕj,u) we obtain for the total cumulative
inflow that F +

e (ℓj,u(ϕj)) − F +
e (ℓj,u(φj)) = 0. Hence, by Lemma 3.1 (iv) we get

ℓj,v(ϕj) ≤ Te(ℓj,u(ϕj)) = Te(ℓj,u(φj)) = ℓj,v(φj) ≤ ℓj,v(ϕj).

Thus, we have equality, which shows that e is active for ϕj . It follows that

qe(θ) = qe(ℓj,u(ϕj)) = ℓj,v(ϕj) − ℓj,u(ϕj) − τe.

Clearly, there cannot be another commodity j′ with ℓj′,v(ϕj′) − ℓj′,u(ϕj′) − τe > qe(θ) since this
would contradict the definition of the earliest arrival times in Equation (5.6).

Underlying static flows. We define the underlying static flow for each commodity j by

xj,e(ϕ) := F +
j,e(ℓj,u(ϕ)) = F −

i,e(ℓi,v(ϕ)) for all e = uv ∈ E.
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Figure 5.3: Foreign flow entering an arc. Particle ϕ of commodity 1 is entering arc e = uv at time θ := ℓ1,u(ϕ).
To determine the inflow rate of the other commodities at this point in time, we consider the
particles ϕi

1,u that also reach node u at time θ. The value x′
i,e(ϕi

1,u) denotes the part of the flow of
commodity i that will use arc e. Hence, we obtain the foreign inflow rates at time θ by dividing this
value by ℓ′

i,u(ϕi
1,u).

It is easy to see that the arc vector (xj(ϕ))e∈E forms a static sj-tj-flow of value ϕ if ϕ ∈ Kj .
Furthermore, these functions are monotone and almost everywhere differentiable and the vector of
derivatives (x′

j(ϕ))e∈E forms a static sj-tj-flow of value 1 for ϕ ∈ Kj or of value 0 otherwise.

Underlying foreign flows. The main challenge of multi-commodity dynamic equilibria is that the
stress of an arc, and therefore the route choice of each particle, depends on flow of all commodities
simultaneously. To obtain some structural insight nevertheless we define the underlying foreign
flow by

yj,e(ϕ) :=
∑

i∈J\{ j }

F +
i,e(ℓj,u(ϕ)) for all e = uv ∈ E.

Note that this is not a static flow in general since the cumulative inflow F +
i,e(ℓj,u(ϕ)) of some

commodity i into an arc e that is active for commodity i but not for commodity j generally differs
from the cumulative outflow F −

i,e(ℓj,v(ϕ)).
Nonetheless, we have

yj,e(ϕ) =
∑

i∈J\{ j }

xi,e(ϕi
j,u) with ϕi

j,u := min ℓ−1
i,u(ℓj,u(ϕ)).

Note that ϕi
j,u is the very first particle of commodity i that can arrive at u (when taking a shortest

path) exactly at the time when the particle ϕ of commodity j reaches u. It is, therefore, a function in
dependency of ϕ, but for sake of readability we omit the parameter in most cases.

Lemma 5.5. For all j ∈ J and e ∈ E the underlying foreign flow yj,e(ϕ) is almost everywhere
differentiable with

y′
j,e(ϕ) =

∑
i∈J\{ j }

f+
i,u(ℓj,u(ϕ)) · ℓ′

j,u(ϕ) =


∑

i∈J\{ j } x′
i,e(ϕi

j,u) · ℓ′
j,u(ϕ)

ℓ′
i,u

(ϕi
j,u

) if ℓ′
j,u(ϕ) > 0,

0 else.

An illustration of the relation between the foreign inflow rates and the derivatives of the underlying
foreign flow can be found in Figure 5.3.

Proof of Lemma 5.5. By Lebesgue’s theorem for the differentiability of monotone functions, ϕi
j,u(ϕ) is

almost everywhere differentiable as it is monotone. As a composition and sum of almost everywhere
differentiable functions so is yj,e(ϕ). Let ϕ be a particle such that the functions ℓj,u(ϕ), ϕi

j.u(ϕ),
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ℓi,u(ϕi
j,u(ϕ)) and yj,e(ϕ) are differentiable for all i ∈ J \ { j }. This is given for almost all particles.

The first equation follows immediately by the chain rule. For ℓ′
j,u(ϕ) = 0 we have y′

j,e(ϕ) = 0. So let
us suppose that ℓ′

j,u(ϕ) > 0. We obtain

0 < ℓ′
j,u(ϕ) = d

dϕ
ℓi,u(ϕi

j,u(ϕ)) = ℓ′
i,u(ϕi

j,u(ϕ)) · d
dϕ

ϕi
j,u(ϕ),

and therefore, ℓ′
i,u(ϕi

j,u(ϕ)) > 0. Again with the chain rule and the equation above it follows
immediately that

y′
j,e(ϕ) =

∑
i∈J\{ j }

x′
i,e(ϕi

j,u(ϕ)) · d
dϕ

ϕi
j,u(ϕ) =

∑
i∈J\{ j }

x′
i,e(ϕi

j,u(ϕ)) ·
ℓ′

j,u(ϕ)
ℓ′

i,u(ϕi
j,u(ϕ))

.

5.1.3 Multi-Commodity Thin Flows
We now want to describe the structure of the derivatives of the underlying static flow (the strategy of
the particles) by an extended thin flow formulation. However, we have to include the derivatives of
the foreign flow into our consideration, and since the foreign flow heavily depends on the underlying
static flow of other commodities we cannot consider only one particle (or one interval of particles) at
a time, but we have to consider the strategy of all particles simultaneously.

Definition 5.6 (Multi-commodity thin flow).
For a given family of arc functions x′ = (x′

j,e)j∈J,e∈E and node functions ℓ′ = (ℓ′
j,v)j∈J,v∈V we

define E′
j,ϕ, E∗

j,ϕ ⊆ E and y′
j,e : R≥0 → [0, ∞) for all j ∈ J , ϕ ∈ R≥0 and e ∈ E as described

above in dependency of the functions ℓj,v(ϕ) :=
∫ ϕ

0 ℓ′
j,v(ξ) dξ. We say that the pair (x′, ℓ′) forms

a multi-commodity thin flow if the following conditions are satisfied:
For all ϕ ∈ R≥0 the arc vector (x′

j,e(ϕ))e∈E forms a static sj-tj-flow of value 1 if ϕ ∈ Kj or of
value 0 if ϕ /∈ Kj . In both cases we have x′

j,e(ϕ) = 0 for all e /∈ E′
j,ϕ and for almost all ϕ ∈ R≥0

the following equations hold:

ℓ′
j,sj

(ϕ) = 1
rj

for all j ∈ J, (mcTF1)

ℓ′
j,v(ϕ) = min

e=uv∈E′
j,ϕ

ρϕ
j,e

(
ℓ′

j,u(ϕ), x′
j,e(ϕ), y′

j,e(ϕ)
)

for all j ∈ J, v ∈ V \ { sj } , (mcTF2)

ℓ′
j,v(ϕ) = ρϕ

j,e

(
ℓ′

j,u(ϕ), x′
j,e(ϕ), y′

j,e(ϕ)
) for all j ∈ J, e = uv ∈ E′

j,ϕ

with x′
j,e > 0,

(mcTF3)

where ρϕ
j,e(ℓ′

j,u, x′
j,e, y′

j,e) :=


x′

j,e+y′
j,e

νe
if e = uv ∈ E∗

j,ϕ,

max
{

ℓ′
j,u,

x′
j,e+y′

j,e

νe

}
if e = uv ∈ E′

j,ϕ\E∗
j,ϕ.

The first main result for multi-commodity Nash flows over time states that the derivatives form a
multi-commodity thin flow.

Theorem 5.7.
For a multi-commodity Nash flow over time f , the derivatives (x′

j,e)j∈J,e∈E and (ℓ′
j,v)j∈J,v∈V form

a multi-commodity thin flow.
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The proof follows the line of the proof of Theorem 3.6 incorporating the derivatives of the foreign
flow. It can be found in the appendix on page 90.
For the reverse direction we show that for a given multi-commodity thin flow (x′, ℓ′) we can
reconstruct the Nash flow over time by setting

f+
j,e(θ) :=

x′
j,e(ϕ)

ℓ′
j,u(ϕ) for θ = ℓj,u(ϕ) and f−

j,e(θ) :=
x′

j,e(ϕ)
ℓ′

j,v(ϕ) for θ = ℓj,v(ϕ)

for all ϕ ∈ R≥0 and every e = uv ∈ E. Furthermore, we set f+
j,e(θ) = 0 for θ < ℓj,u(0) and f−

j,e(θ) = 0
for θ < ℓj,v(0).

Theorem 5.8.
For every multi-commodity thin flow (x′, ℓ′) the family of functions f = (f+

j,e, f−
j,e)j∈J,e∈E as

defined above is a multi-commodity Nash flow over time with earliest arrival time functions

ℓj,v(ϕ) :=
∫ ϕ

0
ℓ′

j,v(ξ) dξ for all j ∈ J, v ∈ V and ϕ ∈ R≥0.

Proof. Clearly, (5.2) is satisfied since flow of every commodity j is conserved at every node v at every
point in time θ = ℓj,v(ϕ), i.e.,

∑
e∈δ+

v

f+
j,e(θ) −

∑
e∈δ−

v

f−
j,e(θ) =

∑
e∈δ+

v

x′
j,e(ϕ)

ℓ′
j,v(ϕ) −

∑
e∈δ−

v

x′
j,e(ϕ)

ℓ′
j,v(ϕ) =

0 if v ∈ V \ { sj } or ϕ /∈ Kj ,

rj if v = sj and ϕ ∈ Kj .

Note that for v = sj we have ϕ ∈ Kj if, and only if, θ = ℓj,sj
(ϕ) ∈ Ij .

For a given e = uv ∈ E and θ ∈ [0, ∞) let ϕj ∈ R≥0 such that ℓj,u(ϕj) = θ for all j ∈ J .
Considering the commodities j, where e is active for j and ϕj , we observe that also all ℓj,v(ϕj) of
these commodities coincide. Hence, (mcTF3) yields

f−
e (θ) =

∑
j∈J

x′
j,e(ϕj)

ℓ′
j,v(ϕj) =

νe if e ∈ E∗
j,ϕj

for some j with e ∈ E′
j,ϕj

,

min
{∑

j∈J

x′
j,e(ϕj)

ℓ′
j,u

(ϕj) , νe

}
else,

=

νe if qe(θ) > 0,

min { f+
e (θ), νe } else.

This shows (5.3).
Equation (5.4) follows by Lemma 5.5 since

f−
j,e(θ) =

x′
j,e(ϕj)

ℓ′
j,v(ϕj) =

y′
j,e(ϕj) + x′

j,e(ϕj)
ℓ′

j,v(ϕj) ·
x′

j,e(ϕj)
ℓ′

j,u(ϕj) ·
ℓ′

j,u(ϕj)
y′

j,e(ϕj) + x′
j,e(ϕj) = f−

e (θ) ·
f+

i,e(θ)
f+

e (θ)
.

In order to show that the ℓ-functions satisfy Equation (5.6) we prove that the derivatives of ℓj,v(ϕ)
and of mine=uv∈E Te(ℓj,u(ϕ)) coincide for all ϕ ∈ R≥0. Lemma 3.1 (vii) implies for almost all
θ ∈ [0, ∞) that

T ′
e(θ) = 1 + q′

e(θ) =

max
{

f+
e (θ)
νe

, 1
}

if qe(θ) = 0,

f+
e (θ)
νe

else.
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Hence,

T ′
e(ℓj,u(ϕ)) · ℓ′

j,u(ϕ) =

max
{

x′
j,e(ϕ)+y′

j,e(ϕ)
νe

, ℓ′
j,u(ϕ)

}
if qe(ℓj,u(ϕ)) = 0,

x′
j,e(ϕ)+y′

j,e(ϕ)
νe

else.

This together with (mcTF2) and the differentiation rule for a minimum (Lemma 2.3 on page 17)
implies that

ℓ′
j,v(ϕ) = d

dϕ
min

e=uv∈E
Te(ℓj,u(ϕ)).

By Lebesgue’s differentiation theorem (Theorem 2.4 on page 18) we obtain (5.6). In other words,
the ℓ-functions are indeed the earliest arrival times for the constructed feasible flow over time f .
Finally, f is a multi-commodity Nash flow over time by Lemma 5.3 since

F +
j,e(ℓj,u(ϕ)) =

∫ ϕ

0
f+

j,e(ℓj,u(ξ))·ℓ′
j,u(ξ) dξ =

∫ ϕ

0
x′

j,e(ξ) dξ =
∫ ϕ

0
f−

j,e(ℓj,v(ξ))·ℓ′
j,v(ξ) dξ = F −

j,e(ℓj,v(ϕ))

for all e = uv ∈ E, j ∈ J and ϕ ∈ R≥0.

To sum this up, Theorems 5.7 and 5.8 show that multi-commodity Nash flows over time correspond
one-to-one to multi-commodity thin flows.

5.1.4 Existence of Multi-Commodity Nash Flows Over Time
The existence of dynamic equilibria in a multi-commodity setting was first shown by Cominetti,
Correa and Larré in [17], even though the proof is not worked out in this paper. The main idea is
to represent feasible multi-commodity flows over time in a path-based formulation, i.e., as vectors
of inflow functions in the Lp-space, and then to formulate the Nash flow condition as an infinite-
dimensional variational inequality. Using Brézis’ theorem (Theorem 2.8 on page 21) guarantees
the existence of a multi-commodity Nash flow over time. We will present a complete proof for
this, but instead of representing the flow over time path-based we will show the existence of a
multi-commodity thin flow in its arc-based form.
In order to avoid degenerated cases we assume from now on that all transit times are strictly positive.
Let H > 0 such that Kj ⊆ [0, H] for all j ∈ J . For this we represent the flow by a vector of functions
x′ = (x′

j,e)j∈J,e∈E ∈ L2([0, H])J×E . Recall that this is a Hilbert space with scalar product

⟨x, y⟩ :=
∑

j∈J,e∈E

∫ H

0
xj,e(ξ) · yj,e(ξ) dξ.

Variational inequalities. As described in Section 2.5.2 on page 20 we want to utilize the following
infinite-dimensional variational inequality. For a set of function vectors X ⊆ L2([0, H])J×E and a
mapping A : X → L2([0, H])J×E the variational inequality is the following task.

Find x′ ∈ X such that ⟨A(x′), z′ − x′⟩ ≥ 0 for all z′ ∈ X. (infVI)

As long as we define X to be non-empty, closed, convex and bounded and the mapping A to be
weak-strong continuous, Brézis’ theorem (Theorem 2.8 on page 21) guarantees a solution to this
variational inequality.
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We start by defining

X :=
{

(x′
j,e)j∈J,e∈E ∈ L2([0, H])J×E

∣∣∣∣∣ (x′
j,e(ϕ))e∈E is a static sj-tj-flow of

value 1 for ϕ ∈ Kj and 0 for ϕ /∈ Kj .

}
.

Clearly, X is a non-empty, closed, convex and bounded subset of L2([0, H])J×E since a convex
combination of two static flows with the same value is again a static flow of this value.
In order to define the mapping A we first need the following lemma.

Lemma 5.9. For every x′ = (x′
j,e)j∈J,e∈E ∈ X we can construct a vector (ℓj,v)j∈J,v∈V of continuous

and monotonically increasing functions such that their derivatives (ℓ′
j,v)j∈J,v∈V satisfy (mcTF1) and

(mcTF2) for all ϕ ∈ [0, H], where we define

ϕi
j,u(ϕ) := min { φ ≥ 0 | ℓi,u(φ) = ℓj,u(ϕ) } and y′

j,e(ϕ) :=
∑

i∈J\{ j }

x′
i,e(ϕi

j,u(ϕ)) ·
ℓ′

j,u(ϕ)
ℓ′

i,u(ϕi
j,u(ϕ))

.

Furthermore, the mapping (x′
j,e)j∈J,e∈E 7→ (ℓj,u)j∈J,u∈V is weak-strong continuous.

The key idea of the proof is to start at time 0 and then extend these functions step by step for later
points in time. Note that we extend over the range of the functions and not over the domain. In each
extension step we determine the change of ℓj,v by plugging x′

j,e(ℓu(ϕ)) and y′
j,e(ℓu(ϕ)) into (mcTF2).

As we assumed that the transit time of every arc is positive we have that ℓj,u(ϕ) < ℓj,v(ϕ) = θ for all
arcs that are active for j and ϕ. Hence, we can extend these functions at least by the minimal transit
time in every step. A detailed proof can be found in the appendix on page 91.
Lemma 5.9 shows that for a given x′ ∈ X we obtain functions ℓj,v, which we can plug into the
equation of Lemma 5.4 in order to obtain waiting time functions (qe)e∈E . Note that the mapping
x′ 7→ q is also weak-strong continuous. Furthermore, the ℓ-functions satisfy Equation (5.6), as we
have already shown in the second half of the proof of Theorem 5.8 (we do not use (mcTF3) in
this part of the proof). It is worth noting, however, that these ℓ- and q-functions do not belong to
a feasible flow over time, in general, as flow conservation might not hold when deriving in- and
outflow rate functions in the usual way.
Finally, we can define the weak-strong continuous mapping A : X → L2([0, H])J×E by

(x′
j,e)j∈J,e∈E 7→ (hj,e)j∈J,e∈E with hj,e(ϕ) := ℓj,u(ϕ) + τe + qe(ℓj,u(ϕ)) − ℓj,v(ϕ).

In other words, if x′ corresponds to a feasible flow over time, hj,e(ϕ) denotes the delay of particle ϕ

when traveling as fast as possible to u first and then using arc e, instead of taking the fastest direct
route to v. In a Nash flow over time this value should always be 0 for each arc e with x′

j,e(ϕ) > 0.

Theorem 5.10.
For every multi-commodity network with positive transit times there exists a multi-commodity thin
flow, and hence, a multi-commodity Nash flow over time.

Proof. Let x′ be a solution to the variational inequality constructed above, which exists due to
Theorem 2.8. In other words, it holds that

∑
e∈E,j∈J

∫ H

0
(ℓj,u(ϕ) + τe + qe(ℓj,u(ϕ)) − ℓj,v(ϕ)) · (z′

j,e − x′
j,e) dξ ≥ 0 for z′ ∈ X.
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Let (ℓv)v∈V be the node labels corresponding to x′ according to Lemma 5.9 with derivatives (ℓ′
v)v∈V .

We will show that (x′, ℓ′) satisfies the multi-commodity thin flow conditions for ϕ ∈ [0, H].
As (mcTF1) and (mcTF2) hold for (ℓ′

v)v∈V by Lemma 5.9 it only remains to show that (mcTF3)
holds for almost all ϕ ∈ [0, H]. In order to do so, suppose that there exist a commodity j, an arc
e = uv and a set with positive measure Φ ⊆ [0, H] such that x′

j,e(ϕ) > 0 and

ℓ′
j,v(ϕ) < ρϕ

j,e

(
ℓ′

j,u(ϕ), x′
j,e(ϕ), y′

j,e(ϕ)
)

.

We assume that Φ is contained in a small interval [a, b] and that x′
j,e(ϕ) ≥ ε for some ε > 0.

Note that for every ϕ ∈ Φ there are two sj-tj-paths Pϕ, Qϕ, which satisfy the following conditions.
Firstly, we require that e ∈ Pϕ and x′

j,e′(ϕ) > ε for all e′ ∈ Pϕ, and secondly, for all e′ = u′v′ ∈ Qϕ

we demand that e′ ∈ E′
j,ϕ as well as

ℓ′
j,v′(ϕ) = ρϕ

j,e′

(
ℓ′

j,u′(ϕ), x′
j,e′(ϕ), y′

j,e′(ϕ)
)

.

The existence of Pϕ follows by the flow conservation of the static flow x′
j,e(ϕ) (ε can be redefined to

be small enough) and the existence of Qϕ follows by the construction of the ℓ′-functions.
It is possible to partition Φ into measurable sets such that the particles ϕ of each subset have the
same paths-pair (Pϕ, Qϕ). Thus, at least one of these subsets has to have a positive measure, and
hence, without loss of generality, we can assume that all particles in Φ have the same pair of paths,
which we denote by P and Q.
We set z′ := x′ with the exception of z′

j,e′(ϕ) := x′
j,e′(ϕ) − ε for all e′ ∈ P . Furthermore, let ϕ ∈ Φ

and z′
j,e′(ϕ) := x′

j,e′(ϕ) + ε for all e′ ∈ Q and ϕ ∈ Φ. Clearly, z′ ∈ X, as the small shift of flow from P

to Q, does not violate the flow conservation and does not change the total flow value. We obtain that

⟨A(x′), z′ − x′⟩ =
∑

e∈E,j∈J

∫ H

0
Te(ℓj,u(ϕ)) · (z′

j,e − x′
j,e) dξ

= −ε ·
∑

e′=u′v′∈P

∫
Φ

Te′(ℓj,u′(ϕ)) − ℓj,v′(ϕ) dϕ + ε ·
∑
e′∈Q

∫
Φ

Te′(ℓj,u′(ϕ)) − ℓj,v′(ϕ) dϕ

≤ −ε ·
∫

Φ
Te(ℓj,u(ϕ)) − ℓj,v(ϕ) dϕ + ε ·

∑
e′∈Q

∫
Φ

Te′(ℓj,u′(ϕ)) − ℓj,v′(ϕ) dϕ

= −ε ·
∫

Φ
Te(ℓj,u(ϕ)) − ℓj,v(ϕ) < 0.

The first inequality follows, since ℓ satisfies (5.6), and hence, Te′(ℓj,u′(ϕ)) − ℓj,v′ ≥ 0 for all e′ =
u′v′ ∈ E. The last equation holds, since Q is a path of active arcs for all particles in Φ, and therefore,
Te′(ℓj,u′(ϕ)) − ℓj,v′(ϕ) = 0 for all e′ = u′v′ ∈ Q and all ϕ ∈ Φ. But this is a contradiction to
the variational inequality (infVI). Hence, (x′, ℓ′) satisfies the thin flow conditions for almost all
ϕ ∈ [0, H].
This shows the existence of a multi-commodity thin flow and with Theorem 5.8 it follows that there
also exists a multi-commodity Nash flow over time on every multi-commodity network.

5.2 Common Destination
Even though multi-commodity Nash flows over time exist, we do not know how to construct them,
as exact solutions to infinite-dimensional variational inequalities cannot be computed algorithmically.
In order to transfer the concepts of the base model to a multi-terminal setting, we consider the
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Figure 5.4: On the left: A multi-commodity network where each commodity has the same destination t. On
the right: In this case we can construct Nash flows over time by reducing the problem to a single
commodity problem. The inflow distribution denotes the proportion of the flow that enters through
each source.

special case where all commodities have the same destination. In other words, we have multiple
sources but only one sink. We consider only one commodity, i.e., only one flow, where each particle
can choose the source for entering the network; see Figure 5.4. Sources further away from the sink
might not be chosen by particles with high priority, but their network inflow rates will be maximal
from time 0 onwards nonetheless.

Evacuation scenarios. Even though this setting seems to be artificial at first glance it has an
important and relevant application. Imagine an inhabited region with a high risk of flooding, where
in the case of rising water levels everyone tries to reach a high-altitude shelter as fast as possible.
Since the road users seek for protection and do not care at which of the shelters they end up, we
can connect all nodes representing one of these safe places to a super sink. Without regulations an
evacuation now corresponds to a Nash flow over time with multiple sources but only a single sink, as
everyone starts at their home and tries to reach one of the shelters as fast as possible.

Networks. To model this special case we consider a network G = (V, E) with transit times τe ≥ 0,
capacities νe > 0 and a sink node t as before. But this time we have, in addition, a set of sources
S := { sj | j ∈ J } with network inflow rates rj for each commodity j. We assume that every source
can reach the sink, that every node is reachable by at least one source and that all directed cycles
have a strictly positive total transit time.
We do not distinguish between different commodities because as soon as the particles have entered
the network they all have the same goal, namely to reach the sink as fast as possible, and therefore,
their identity is interchangeable.
We use the same notation of flow rates, cumulative flows, queue sizes and waiting times as in the
base model, this time, however, we say that flow is conserved on a node v ∈ V \ { t } if

∑
e∈δ+

v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) =

0 if v ∈ V \ S,

rj if v = sj ∈ S.
(5.7)

A flow over time is a family of locally integrable and bounded functions (f+
e , f−

e )e∈E that satisfies
(3.1) and (5.7) and it is feasible if (3.3) is fulfilled.

Inflow distributions. In order to denote which particle enters through which source we need
additional functions. A family of locally integrable functions fj : R≥0 → [0, 1], for j ∈ J , is called
inflow distribution if

∑
j∈J fj(ϕ) = 1 for almost all ϕ ∈ R≥0 and if each cumulative source inflow

Fj(ϕ) :=
∫ ϕ

0 fj(φ) dφ is unbounded for ϕ → ∞. The function fj(ϕ) describes the fraction of particle ϕ
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that enters the network trough sj . The cumulative source inflow functions have to be unbounded in
order to guarantee that the inflow rates at the sources never run dry.

Source arrival times. Given a feasible flow over time f , the source arrival time functions map each
particle ϕ ∈ R≥0 to the time it arrives at sj and they are given by

Tj(ϕ) := Fj(ϕ)
rj

.

Earliest arrival times. The earliest arrival times are now defined by

ℓsj
(ϕ) = min ({ Tj(ϕ) } ∪ { Te(ℓu(ϕ)) | e = usj ∈ E }) for j ∈ J,

ℓv(ϕ) = min
e=uv∈E

Te(ℓu(ϕ)) for v ∈ V \S.
(5.8)

This is well-defined since all cycles in G have positive travel times by assumption.

Current shortest paths networks and active arcs. As before we call an arc e = uv active for ϕ if
ℓv(ϕ) = Te(ℓu(ϕ)) holds and we denote the set of all active arcs for a particle ϕ by E′

ϕ as well as the
current shortest paths network by G′

ϕ = (V, E′
ϕ). Furthermore, E∗

ϕ :={e = uv ∈ E | qe(ℓu(θ)) > 0}
denotes the set of resetting arcs.

Multi-source single-sink Nash flows over time. A dynamic equilibrium now consists of a feasible
flow over time together with an inflow distribution and each particle chooses a convex combination
of routes from the sources to the sink such that it arrives there as fast as possible.

Definition 5.11 (Nash flow over time).
A tuple f = ((f+

e )e∈E , (fj)j∈J) consisting of a feasible flow over time and an inflow distribution
is a Nash flow over time if the following two Nash flow conditions hold:

ℓsj
(ϕ) = Tj(ϕ) for all j ∈ J and almost all ϕ ∈ R≥0, (msN1)

f+
e (θ) > 0 ⇒ θ ∈ ℓu(Φe) for all arcs e = uv ∈ E and almost all θ ∈ [0, ∞), (msN2)

where Φe := { ϕ ∈ R≥0 | e ∈ E′
ϕ } is the set of flow particles for which arc e is active.

Figuratively speaking, these two conditions mean that entering the network through a source sj is
always a fastest way to reach sj (msN1) and that a Nash flow over time uses only active arcs (msN2),
and therefore only shortest paths, to t.

Lemma 5.12. A tuple f = ((f+
e )e∈E , (fj)j∈J) of a feasible flow over time and an inflow distribution is

a Nash flow over time if, and only if, we have

F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)) and Fj(ϕ) = ℓsj (ϕ) · rj

for all arcs e = uv ∈ E, every j ∈ J , and all particles ϕ ∈ R≥0.

Proof. From Lemma 3.3 (i) ⇔ (iii) it follows immediately that (msN2) is satisfied if, and only if,
F +

e (ℓu(ϕ)) = F −
e (ℓv(ϕ)) for all e ∈ E and all ϕ ∈ R≥0. Hence, the lemma is true since Tj(ϕ) = Fj(ϕ)

rj
,

and therefore, (msN1) is satisfied if, and only if, Fj(ϕ) = ℓsj
(ϕ) · rj for all j ∈ J and all ϕ ∈ R≥0.

Underlying static flows. The underlying static flow is now given by two types of functions

xe(ϕ) := F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)) and xj(ϕ) := Fj(ϕ) = ℓsj
(ϕ) · rj .
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For every ϕ this is a static S-t-flow with xj(ϕ) as supply at source sj since the integral of (5.7) over
[0, ℓv(ϕ)] yields

∑
e∈δ+

v

xe(ϕ) −
∑

e∈δ−
v

xe(ϕ) =

0 if v ∈ V \ (S ∪ { t }),

ℓsj
(ϕ) · rj = xj(ϕ) if v = sj ∈ S.

(5.9)

Let x′
e, x′

j and ℓ′
v denote the derivative functions, which exist almost everywhere, since the x- and

ℓ-functions are monotone. Then, it is possible to determine the inflow function of every arc e = uv

as well as the inflow distribution from these derivatives, since

x′
e(ϕ) = f+

e (ℓu(ϕ)) · ℓ′
u(ϕ) and fj(ϕ) = ℓ′

sj
(ϕ) · rj .

Consequently, a Nash flow over time is, again, completely characterized by these derivatives. Differ-
entiating (5.9) yields that x′(ϕ) also forms a static S-t-flow, which we consider next.

Thin flows with resetting for multiple sources and a single sink. Let E′ ⊆ E be a subset of arcs such
that the subgraph G′ = (V, E′) is acyclic and every node is reachable by some source within G′. Note
that not every node needs to be able to reach sink t. Additionally, we consider a subset of resetting
arcs E∗ ⊆ E′. Moreover, let X

(
E′, (x′

j)j∈J

)
be the set of all static S-t-flows in G′ with supply x′

j at
source sj for x′

j ≥ 0 and
∑

j∈J x′
j = 1.

Definition 5.13 (Thin flow with resetting for multiple sources).
A vector (x′

j)j∈J with x′
j ≥ 0 and

∑
j∈J x′

j = 1, together with a static flow (x′
e)e∈E ∈

X
(
E′, (x′

j)j∈J

)
and a node labeling (ℓ′

v)v∈V is called thin flow with resetting on E∗ ⊆ E′ if

ℓ′
sj

=
x′

j

rj
for all j ∈ J, (msTF1)

ℓ′
sj

≤ min
e=usj∈E′

ρe(ℓ′
u, x′

e) for all j ∈ J, (msTF2)

ℓ′
v = min

e=uv∈E′
ρe(ℓ′

u, x′
e) for all v ∈ V \S, (msTF3)

ℓ′
v = ρe(ℓ′

u, x′
e) for all e = uv ∈ E′ with x′

e > 0, (msTF4)

where ρe(ℓ′
u, x′

e) :=


x′

e

νe
if e = uv ∈ E∗,

max
{

ℓ′
u,

x′
e

νe

}
if e = uv ∈ E′\E∗.

As before we can prove that the derivatives of a Nash flow over time f form a thin flow with resetting
almost everywhere.

Theorem 5.14.
For a Nash flow over time ((f+

e )e∈E , (fj)j∈J) the derivative labels (x′
j(ϕ))j∈J and (x′

e(ϕ))e∈E′
ϕ

together with (ℓ′
v(ϕ))v∈V form a thin flow with resetting on E∗

ϕ in the current shortest paths
network G′

ϕ = (V, E′
ϕ) for almost all ϕ ∈ R≥0.

Proof. We have that x′
j(ϕ) = fj(ϕ) ≥ 0 for all j ∈ J and

∑
j∈J x′

j(ϕ) =
∑

j∈J fj(ϕ) = 1 for almost
all ϕ ∈ R≥0. Equation (msTF1) follows immediately from Lemma 5.12 and Equations (msTF2)
and (msTF4) can be proven in the exact same way as (TF2) and (TF3) in Theorem 3.6.

Constructing Nash flows over time. In order to construct a multi-source Nash flow we first show
the existence of multi-source thin flows with resetting.
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Theorem 5.15.
Consider an acyclic graph G′ = (V, E′) with sources S, sink t, capacities νe and a subset of
arcs E∗ ⊆ E′. Suppose that every node is reachable by some source. Then there exists a thin flow(
(x′

j)j∈J , (x′
e)e∈E , (ℓ′

v)v∈V

)
with resetting on E∗.

In order to show this, the proof of Theorem 3.7 needs only be modified slightly to fit the new
definition of a thin flow with resetting in the multi-source setting. The key idea is, again, to use a
set-valued function in order to apply Kakutani’s fixed-point theorem (Theorem 2.9 on page 22). A
detailed version of the proof can be found in the appendix on page 92.
A restricted inflow distribution on [0, ϕ) is a family of functions fj : [0, ϕ) → [0, 1] that satisfies∑

j∈J fj(φ) = 1 for almost all φ ∈ [0, ϕ). A restricted Nash flow over time on [0, ϕ) is a feasible
flow over time together with a restricted Nash flow condition that satisfies the Nash flow conditions
(msN1) and (msN2) for almost all particles in [0, ϕ) and almost all times in [0, ℓu(ϕ)). Note that we
do not demand that the cumulative source inflow functions Fj of a restricted inflow distribution are
unbounded. This would not make any sense as ϕ is always a trivial upper bound.
In the same manner as described in Section 3.5 it is now possible to extend a restricted Nash flow
over time by computing a thin flow with resetting and defining

ℓv(ϕ + ξ) := ℓv(ϕ) + ξ · ℓ′
v and

xe(ϕ + ξ) := xe(ϕ) + ξ · x′
e,

xj(ϕ + ξ) := xj(ϕ) + ξ · x′
j ,

for all v ∈ V , e ∈ E, j ∈ J , and ξ ∈ [0, α] for some α > 0 that satisfies (3.9) and (3.10).
Based on this we can extend the inflow functions and the inflow distribution, which gives us

f+
e (θ) := x′

e

ℓ′
u

for θ ∈ [ℓu(ϕ), ℓu(ϕ + α)),

f−
e (θ) := x′

e

ℓ′
v

for θ ∈ [ℓv(ϕ), ℓv(ϕ + α))

and fj(φ) := x′
j · rj for φ ∈ [ϕ, ϕ + α)

for all e = uv ∈ E and all j ∈ J . Note that in the case of ℓ′
u = 0 the time interval [ℓu(ϕ), ℓu(ϕ + α))

is empty and the same is true for the corresponding time interval if ℓ′
v = 0. Once more we call this

extended flow α-extension.

Theorem 5.16.
Given a restricted Nash flow over time ((f+

e )e∈E , (fi)n
i=1) on [0, ϕ) and an α > 0 satisfying (3.9)

and (3.10), then the α-extension is a restricted Nash flow over time on [0, ϕ + α).

Proof. Since ∑
e∈δ+

sj

f+
e (θ) −

∑
e∈δ−

sj

f−
e (θ) =

∑
e∈δ+

sj

x′
e

ℓ′
sj

−
∑

e∈δ−
sj

x′
e

ℓ′
sj

=
x′

j

ℓ′
sj

= rj

Lemma 3.9 implies that the α-extension is a feasible flow over time. Furthermore,

ℓsj
(ϕ + ξ) = ℓsj

(ϕ) + ξ · ℓ′
sj

(msN1)= Tj(ϕ) + ξ ·
x′

j

rj
= Tj(ϕ) + ξ · T ′

j(ϕ) = Tj(ϕ + ξ),

together with the second part of Lemma 3.9 yields that the ℓ-labels satisfy Equation (5.8), i.e.,
they match the earliest arrival times. In addition, we have

∑
j∈J fj(θ) =

∑
j∈J x′

j = 1 for all
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θ ∈ [ϕ, ϕ + α), which shows that (fj)j∈J is a restricted inflow distribution. Finally, Lemma 5.12 yields
F +

e (ℓu(φ)) = F −
e (ℓv(φ)) and Fj(φ) = ℓsj

(φ) · rj for all φ ∈ [0, ϕ), so for ξ ∈ [0, α) it holds that

F +
e (ℓu(ϕ + ξ)) = F +

e (ℓu(ϕ)) + x′
e

ℓ′
u

· ξ · ℓ′
u = F −

e (ℓv(ϕ)) + x′
e

ℓ′
v

· ξ · ℓ′
v = F −

e (ℓv(ϕ + ξ)),

Fj(ϕ + ξ) = Fj(ϕ) + ξ · x′
j = ℓsj

(ϕ) · rj + ξ · ℓ′
sj

· rj = ℓsj
(ϕ + ξ) · rj .

Lemma 5.12 implies that the α-extension is a restricted Nash flow over time on [0, ϕ + α).

Finally, we show that this construction leads to a multi-source Nash flow over time.

Theorem 5.17.
There exists a multi-source single-sink Nash flow over time.

Proof. The proof is the same as for Theorem 3.11 in the base model with the only exception that
we have to show in addition that all cumulative source inflow functions are unbounded. We start
by showing that the earliest arrival time ℓt is unbounded. There cannot be an upper bound B on ℓt

since the flow rate into t is bounded by N :=
∑

e∈δ−
t

νe and with the FIFO principle we obtain that

no particle ϕ > N · B reaches t before time ϕ
N > B. Next, we show that all ℓ-labels are unbounded.

Suppose this is not true. Since every node can reach t there would be an arc e = uv, where ℓu is
bounded and ℓv is not. Since Te is Lipschitz continuous Te ◦ ℓu would be bounded as well. But this
contradicts that ℓv(ϕ) ≤ Te(ℓu(ϕ)) goes to ∞ for ϕ → ∞. Hence, Fj(ϕ) = ℓsj (ϕ) · rj is unbounded
for every j ∈ J , which completes the proof.

Multi-commodity Nash flows over time with common destination. Finally, we want to show that
these multi-source single-sink Nash flows over time do indeed correspond to a multi-commodity Nash
flow over time where all commodities share the same destination. To do so, consider a multi-source
single-sink Nash flow over time f = (f+

e , f−
e ) as constructed above with a thin flow (x′(ϕ), ℓ′(ϕ))

for each particle ϕ. By adding a super source s and a new arc ej = ssj carrying a flow of x′
j(ϕ) for

each j ∈ J , we obtain an s-t-flow of value 1 and by using the flow decomposition theorem (see
Theorem 2.1 on page 11) we obtain a path-based formulation (x′

P )P ∈P . For every j ∈ J let Pj be
all s-t-paths that start with the new arc ej . By assigning all flow on these paths to commodity j we
obtain

x′
j,e :=

∑
P ∈Pj

with e∈P

xP .

Setting

f+
j,e(θ) :=

x′
j.e(ϕ)
ℓ′

u(ϕ) for θ = ℓu(ϕ) and f−
j,e(θ) :=

x′
j,e(ϕ)
ℓ′

v(ϕ) for θ = ℓv(ϕ)

for all ϕ ∈ R≥0 provides a multi-commodity Nash flow over time with unlimited inflow rates as we
show in the following theorem.

Theorem 5.18.
The family of functions (f+

j,e, f−
j,e)j∈J,e∈E is a multi-commodity Nash flow over time in a network

with inflow rates rj and Ij = [0, ∞) for all j ∈ J .
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Proof. Flow conservation (5.2) for every commodity j ∈ J on every node v ∈ V \ { t } follows
immediately since

∑
e∈δ+

v

f+
j,e(θ) −

∑
e∈δ−

v

f−
j,e(θ) =

∑
e∈δ+

v

x′
j,e

ℓ′
j,v

−
∑

e∈δ−
v

x′
j,e

ℓ′
j,v

=

0 if v ̸= si,
x′

j

ℓ′
v

= rj if v = sj .

The condition on the total outflow rate (5.3) holds as we have shown in Theorem 5.16 and Condi-
tion (5.4) is satisfied for each arc e = uv ∈ E since in the case of f+

e (ℓu(ϕ)) > 0 we have that e is
active (from the single-commodity perspective), i.e., ℓv(ϕ) = Te(lu(ϕ)), and therefore,

f−
j,e(ℓv(ϕ)) =

x′
j,e(ϕ)
ℓ′

v(ϕ) = x′
e(ϕ)

ℓ′
v(ϕ) ·

x′
j,e(ϕ)
ℓ′

u(ϕ) · ℓ′
u(ϕ)

x′
e(ϕ) = f−

e (ℓv(ϕ)) ·
f+

j,e(ℓu(ϕ))
f+

e (ℓu(ϕ))
.

For f+
e (ℓu(ϕ)) = 0 we clearly have x′

i,e = 0, and thus, f−
i,e(ℓv(ϕ)) = 0. Note that the function ℓv

is continuous and unbounded, and therefore, we can found for every θ ≥ ℓv(0) a ϕ ∈ R≥0 with
θ = ℓv(ϕ). For θ < ℓv(0) we have f+

j,e(θ) = f−
j,e(θ) = 0 as no flow has reached e yet. Hence, we have

a feasible multi-commodity flow over time.
The multi-commodity Nash flow condition (mcN) follows immediately by Lemma 5.3 and by

F +
j,e(ℓu(ϕ)) =

∫ ϕ

0
f+

j,e(ℓu(ξ)) · ℓ′
u(ξ) dξ =

∫ ϕ

0
x′

j,e(ξ) dξ =
∫ ϕ

0
f−

j,e(ℓv(ξ)) · ℓ′
v(ξ) dξ = F −

j,e(ℓv(ϕ)),

which holds for all ϕ ∈ R≥0.

5.3 Common Origin
In this last section of the multi-commodity chapter we are going to analyze the second special case
of multiple commodities with a common origin. Suppose that each commodity has its own sink
but all flow starts at the same common source; see left the side of Figure 5.5. In this scenario the
commodities matter a lot, since different flow particles within the network might want to reach
different sinks. Nonetheless, we show that this special case, once again, can be reduced to the single
commodity case by using a super sink construction as it is shown on the right side of Figure 5.5. The
commodities can then be reconstructed by using path decompositions of the thin flows.

Extended graphs. In order to construct a Nash flow over time in this setting we add a super sink to
the graph. For this let νmin := mine∈E νe be the minimal capacity of the network, r :=

∑
j∈J rj the

t1

t2

t3

s

t1

t2 t

e3

e2

e1

t3

s

Figure 5.5: On the left: A multi-commodity network where all commodities share the same origin. On the right:
Constructing a multi-commodity Nash flow over time in this setting can be reduced to a single
commodity Nash flow over time by adding a super sink t and new arcs ej with very small capacities.
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total network inflow and σ := min { νmin, r }. For all j ∈ J we define δj to be the length of a shortest
s-tj-path according to the transit times. Furthermore, let δmax := maxj∈J δj be the maximal distance
from the source to a sink. We extend G by a super sink t and |J | new arcs ej := (tj , t) with

τej
:= δmax − δj and νej

:= rj · σ

2r
. (5.10)

We denote the extended graph by Ḡ := (V̄ , Ē) with V̄ := V ∪ { t } and Ē := E ∪ { e1, . . . , em }.
Note that the new capacities are strictly smaller than all original capacities and that they are
proportional to the inflow rate of the respective commodity. Furthermore, we choose the transit
times such that all new arcs are in the current shortest paths network for particle ϕ = 0. The reason
for the choice of σ is the following.

Lemma 5.19. For every single-commodity thin flow with resetting (x′, ℓ′) (see page 33) in Ḡ it holds
for all v ∈ V \ { t } that ℓ′

v ≤ 1
σ .

Proof. We have ℓ′
s = 1

r ≤ 1
σ and x′

e

νe
≤ 1

νmin
≤ 1

σ . Hence, by induction over the acyclic current shortest

paths network we obtain that ℓ′
v ≤ max { x′

e

νe
, ℓ′

u } ≤ 1
σ for all active arcs e = uv.

Reduction from single-commodity Nash flows over time. We obtain a multi-commodity Nash flow
over time f with common source by using a single-commodity Nash flow over time f̄ in Ḡ, which
exists due to Theorem 3.11. To prove this we first show that, if all new arcs are active for some particle
ϕ, then there is a static flow decomposition of the single-commodity thin flow with resetting x′ with
x′

ej
= rj . This is formalized in the following lemma, where we write x′

∣∣
E

for the restriction of x′ to
the original graph G and | · | for the flow value of a static flow.

Lemma 5.20. For any E∗ ⊆ E′ ⊆ Ē with { ej | j ∈ J } ⊆ E′ consider the single-commodity thin flow
with resetting (x′, ℓ′) with network inflow rate r. There exists a static flow decomposition (x′

j,e)j∈J,e∈E

with x′
∣∣
E

=
∑

j∈J x′
j such that each static flow x′

j conserves flow on all v ∈ V \ ({ s, tj }) and∣∣x′
j

∣∣ = x′
ej

= rj

r for j ∈ J .

Proof. Let P be the set of all s-t-paths in the current shortest paths network G′ = (V, E′). Note that
G′ is always acyclic and x′ can therefore be described by the path vector (x′

P )P ∈P due to the flow
decomposition theorem (Theorem 2.1 on page 11). For all j ∈ J let Pj be the set of all s-t-paths that
contain ej . These sets form a partition of P since every path has to use exactly one of the new arcs.
By setting x′

j :=
∑

P ∈Pj
x′

P

∣∣
E

we obtain the desired decomposition of x′, because x′
P

∣∣
E

for P ∈ Pj

conserves flow on all nodes except for the ones in { s, tj } and the same is true for sums of these path
flows.
Since x′

j sends
∣∣x′

j

∣∣ flow units from s over ej to tj we have
∣∣x′

j

∣∣ = x′
ej

. It remains to show that
x′

ej
= rj

r for all j ∈ J . Suppose that this is not true. Since x′ sends exactly 1 =
∑

j∈J
rj

r flow units
from s to t, there has to be an index a ∈ J with x′

ea
> ra

r and an index b ∈ J with x′
eb

< rb

r .
With Lemma 5.19 it follows that

ℓ′
tb

≤ 1
σ

(5.10)
<

ra

r · νea

<
x′

ea

νea

(TF3)
≤ ℓ′

t and
x′

eb

νeb

(5.10)=
x′

eb
· r

rb︸ ︷︷ ︸
<1

· 2
σ

<
x′

ea
· r

ra︸ ︷︷ ︸
>1

· 2
σ

(5.10)=
x′

ea

νea

(TF3)
≤ ℓ′

t.

But this is a contradiction, since (TF2) yields that ℓ′
t = min

j∈J
ρej

(ℓ′
tj

, x′
ej

) and the last two equations

show that ρeb
(ℓ′

tb
, x′

eb
) < ℓ′

t. Hence, we have x′
ej

= rj

r for all j ∈ J , which finishes the proof.

As the next step we show that the new arcs are always active.
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Lemma 5.21. In a Nash flow over time f̄ in Ḡ all new arcs (ej)j ∈ J are active for all particles ϕ ∈ R≥0.

Proof. For particle ϕ = 0 there are no queues yet, and therefore, the exit time for each arc e

is Te(θ) = θ + τe. Hence, ℓtj
(0) = δj and by construction we have for all j ∈ J that

ℓt(0) = ℓtj
(0) + τej

= Tej
(ℓtj

(0)).

Therefore, all arcs ej are active at the beginning and also during the first thin flow phase because by
Lemma 5.20 we have x′

ej
> 0 for the first thin flow with resetting, which implies that arc ej stays

active.
Suppose now for contradiction that there are particles for which not all new arcs are active. Let ϕ0

be the infimum of these particles. By the consideration above we have ϕ0 > 0 and Lemmas 5.19
and 5.20 imply that

f+
ej

(ℓtj (ϕ)) =
x′

ej

ℓ′
tj

≥ x′
ej

· σ = rj

r
· σ

(5.10)
> νej

for almost all ϕ ∈ [0, ϕ0) and all j ∈ J . Hence, Lemma 3.1 (vii) together with the fact that ℓ′
tj

> 0
(due to the positive throughput of x′ at tj) yields

d
dϕ

qej
(ℓtj

(ϕ)) = q′
ej

(ℓtj
(ϕ)) · ℓ′

tj
(ϕ) > 0.

In other words, a queue is building up within [0, ϕ0), and therefore, qej
(ℓtj

(ϕ0)) > 0 for all j ∈ J . The
continuity of qej ◦ ℓtj implies that there will be positive queues for all ϕ ∈ [ϕ0, ϕ0 + ε] for sufficiently
small ε > 0. Hence, Lemma 3.4 implies that all new arcs are active during this interval contradicting
the existence of ϕ0.

Nash flows over time decomposition. With the help of the previous lemmas we can decompose the
single-commodity Nash flow over time in Ḡ to obtain a feasible multi-commodity flow over time in
the original graph G.
For each thin flow phase I = [ϕ1, ϕ2) with thin flow (x′

e, ℓ′
e) and thin flow decomposition (x′

j)j∈J we
set

f+
j,e(θ) :=

x′
j,e

ℓ′
u

for θ ∈ [ℓu(ϕ1), ℓu(ϕ2)) and f−
j,e(θ) :=

x′
j,e

ℓ′
v

for θ ∈ ℓv(ϕ1), ℓv(ϕ2))

for all j ∈ J and every e = uv ∈ E. Note that if ℓ′
u = 0 we have [ℓu(ϕ1), ℓu(ϕ2)) = ∅. We call the

family of functions (f+
j,e, f−

j,e) a Nash flow over time decomposition.

Theorem 5.22.
The Nash flow over time decomposition (f+

j,e, f−
je

) is a multi-commodity Nash flow over time in the
original network.

Proof. Throughout this proof δ−
v and δ+

v denote the incoming and outgoing arcs of v within the
original network G by. Since the particles are partitioned into thin flow phases we consider each thin
flow phase I = [ϕ1, ϕ2) separately.
Let (x′, ℓ′) be the corresponding thin flow with thin flow decomposition (x′

j)j∈J . Furthermore, we
denote the interval of local times of particles in I by Iv := [ℓv(ϕ1), ℓv(ϕ2)) for every node v.
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First, we have to show that the flow over time decompositions form a feasible multi-commodity
flow over time. For every j ∈ J and every node v ∈ V \ { tj } and all θ ∈ Iv the flow conservation
condition (5.2) holds since

∑
e∈δ−

v

f−
j,e(θ) −

∑
e∈δ+

v

f+
j,e(θ) =

∑
e∈δ−

v

x′
j,e

ℓ′
v

−
∑

e∈δ+
v

x′
j,e

ℓ′
v

= 1
ℓ′

v

·

∑
e∈δ−

v

x′
j,e −

∑
e∈δ+

v

x′
j,e

 =

0 if v ∈ V \ { s } ,
rj

r·ℓ′
s

= rj if v = s.

Furthermore, for x′
e > 0 we obtain for all θ ∈ Iu and ϑ = Te(θ) ∈ Iv that

f−
j,e(θ) =

x′
j,e

ℓ′
v

= x′
e

ℓ′
v

· x′j
e

ℓ′
u

· ℓ′
u

x′
e

= f−
e (θ) ·

f+
j,e(ϑ)

f+
e (ϑ)

and for x′
e = 0 we have x′

j,e = 0, which implies f−
j,e(θ) = 0. This shows that (5.4) is satisfied.

Equation (5.3) follows by Lemma 3.9 since the total flow is a feasible flow over time, and therefore,
we have a feasible multi-commodity flow over time.
Finally, since

F +
j,e(ℓu(ϕ)) =

∫ ϕ

0
f+

j,e(ℓu(ξ)) · ℓ′
u(ξ) dξ =

∫ ϕ

0
x′j

e (ξ) dξ =
∫ ϕ

0
f−

j,e(ℓv(ξ)) · ℓ′
v(ξ) dξ = F −

j,e(ℓv(ϕ))

we obtain by Lemma 5.3 that (f+
j,e, f−

je
) is indeed a multi-commodity Nash flow over time.
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5.4 Appendix: Technical Proofs
Lemma 5.3. For a feasible multi-commodity flow over time f the following statements are equivalent:

(i) f is a multi-commodity Nash flow over time.

(ii) F +
j,e(ℓj,u(ϕ)) = F −

j,e(ℓj,v(ϕ)) for all e = uv, j ∈ J and all ϕ ∈ R≥0.

Proof. (i)⇒(ii): Let ξ ∈ [0, ϕ] be maximal with F +
j,e(ℓj,u(ξ)) = F −

j,e(ℓj,v(ϕ)). Such particle ξ exists due
to the intermediate value theorem (Theorem 2.2 on page 16), together with the fact that F +

j,e ◦ ℓj,u

is continuous and with the following inequality, which follows by the monotonicity of F −
j,e and

Lemma 5.1:

F +
j,e(ℓj,u(0)) = 0 ≤ F −

j,e(ℓj,v(ϕ)) ≤ F −
j,e(Te(ℓj,u(ϕ))) = F +

j,e(ℓj,u(ϕ)).

Note that the second inequality holds because of ℓj,v(ϕ) ≤ Tj,e(ℓj,u(ϕ)). In the case of ξ = ϕ we
are done, so suppose ξ < ϕ. For all particles φ ∈ (ξ, ϕ] we know that Te(ℓj,u(φ)) ̸= ℓj,v(ϕ), since
otherwise, we had with Lemma 5.1 that F +

j,e(ℓj,u(φ)) = F −
j,e(Te(ℓj,u(φ))) = F −

j,e(ℓj,v(ϕ)), which
would contradict the maximality of ξ. Hence, e is not active for particles in (ξ, ϕ] which implies
f+

j,e(θ) = 0 for almost all θ ∈ ℓj,u((ξ, ϕ]) = (ℓj,u(ξ), ℓj,u(ϕ)] by (mcN). This leads to

F +
j,e(ℓj,u(ϕ)) − F −

j,e(ℓj,v(ϕ)) = F +
j,e(ℓj,u(ϕ)) − F +

j,e(ℓj,u(ξ)) =
∫ ℓj,u(ϕ)

ℓj,u(ξ)
f+

j,e(ϑ) dϑ = 0,

which shows (ii).
(ii)⇒(i): Consider a particle ϕ and an arc e = uv such that e is not active for ϕ and j, in other words,
ℓj,v(ϕ) < Te(ℓj,u(ϕ)). Then, the continuity of ℓj,v and Te ◦ ℓj,u implies that there exists an ε > 0 with
ℓj,v(ϕ + ε) < Te(ℓj,u(ϕ − ε)) and that e is not active for all particles in [ϕ − ε, ϕ + ε] and j. This, the
fact that f+

j,e and f−
j,e are non-negative and Lemma 5.1 gives us

0 ≤
∫ ℓj,u(ϕ+ε)

ℓj,u(ϕ−ε)
f+

j,e(ξ) dξ =
∫ Te(ℓj,u(ϕ+ε))

Te(ℓj,u(ϕ−ε))
f−

j,e(ξ) dξ

≤
∫ Te(ℓj,u(ϕ+ε))

ℓj,v(ϕ+ε)
f−

j,e(ξ) dξ

= F −
j,e(Te(ℓj,u(ϕ + ε))) − F −

j,e(ℓj,v(ϕ + ε))

= F +
j,e(ℓj,u(ϕ + ε)) − F −

j,e(ℓj,v(ϕ + ε))
(ii)= 0.

Hence, f+
j,e(θ) = 0 for almost all θ ∈ [ℓj,u(ϕ − ε), ℓj,u(ϕ + ε)]. In other words, for almost all θ ∈ [0, ∞)

it holds that θ /∈ ℓj,u(Φj,e) ⇒ f+
j,e(θ) = 0. This is true because for θ ≥ ℓj,u(0) we find a particle ϕ

with ℓj,u(ϕ) = θ, due to the fact that ℓj,u is surjective. This shows that f is a Nash flow over time,
which finishes the proof.
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Theorem 5.7.
For a multi-commodity Nash flow over time f , the derivatives (x′

j,e)j∈J,e∈E and (ℓ′
j,v)j∈J,v∈V form

a multi-commodity thin flow.

Proof. Let ϕ ∈ R≥0 be a particle such that for all arcs e = uv and all j ∈ J the derivatives of ℓj,u, xj,e,
yj,e and Te ◦ℓj,u exist. Furthermore, assume that x′

j.e(ϕ) = f+
j,e(ℓj,u(ϕ))·ℓ′

j,u(ϕ) = f−
j,e(ℓj,v(ϕ))·ℓ′

j,v(ϕ)
and that (mcN) as well as the equation in Lemma 5.5 hold. This is given for almost all ϕ ∈ R≥0. By
(mcN) we have f+

j,e(ϕ) = 0, and therefore x′
i,e(ϕ) = 0, for all arcs e ∈ E \ E′

i,ϕ, which shows that
(x′

j,e)e∈E is indeed a static flow on Gj,ϕ.
Taking the derivatives of the first equation of (5.6) shows immediately (mcTF1).
In oder to show (mcTF2) we add f+

j,u(ℓj,u(ϕ)) · ℓ′
j,u(ϕ) = x′

j,e(ϕ) to the equation in Lemma 5.5 and
obtain

f+
e (ℓj,u(ϕ)) · ℓ′

j,u(ϕ) =
∑
i∈J

f+
i,e(ℓj,u(ϕ)) · ℓ′

j,u(ϕ) = x′
j,e(ϕ) + y′

j,e(ϕ).

Furthermore, by Lemma 3.1 (vii) we have for almost all θ ∈ [0, ∞) that

T ′
e(θ) = 1 + q′

e(θ) =

max
{

f+
e (θ)
νe

, 1
}

if qe(θ) = 0,

f+
e (θ)
νe

else.

Hence,

d
dϕ

Te(ℓj,u(ϕ)) = T ′
e(ℓj,u(ϕ)) · ℓ′

j,u(ϕ) =

max
{

x′
j,e(ϕ)+y′

j,e(ϕ)
νe

, ℓ′
j,u(ϕ)

}
if qe(ℓj,u(ϕ)) = 0,

x′
j,e(ϕ)+y′

j,e(ϕ)
νe

else.

This, together with (5.6) and the differentiation rule for a minimum (Lemma 2.3), implies (mcTF2).
In oder to prove (mcTF3) suppose x′

j,e(ϕ) = f−
j,e(ℓv(ϕ)) · ℓ′

j,v(ϕ) > 0, which implies f+
e (ℓj,u(ϕ)) ≥

f+
j,e(ℓj,u(ϕ)) > 0. Since e is active for j we have ℓj,v(ϕ) = Te(ℓj,u(ϕ)). Hence,

ℓ′
j,v(ϕ) =

x′
j,e(ϕ)

f−
j,e(ℓj,v(ϕ))

(5.4)=
x′

j,e(ϕ) · f+
e (ℓj,u(ϕ))

f+
j,e(ℓj,u(ϕ)) · f−

e (ℓj,v(ϕ))

=
ℓ′

j,u(ϕ) · f+
e (ℓj,u(ϕ))

f−
e (ℓj,v(ϕ))

(5.3)=


max

{
ℓ′

j,u(ϕ),
ℓ′

j,u(ϕ) · f+
e (ℓj,u(ϕ))

νe

}
if qe(ℓj,u(ϕ)) = 0,

ℓ′
j,u(ϕ) · f+

e (ℓj,u(ϕ))
νe

else,

=


max

{
ℓ′

j,u(ϕ),
x′

j,e(ϕ) + y′
j,e(ϕ)

νe

}
if e ∈ E′

j,ϕ\E∗
j,ϕ,

x′
j,e(ϕ) + y′

j,e(ϕ)
νe

if e ∈ E∗
j,ϕ,

= ρϕ
j,e

(
ℓ′

j,u(ϕ), x′
j,e(ϕ), y′

j,e(ϕ)
)

.

Thus, (mcTF3) is fulfilled, which finishes the proof.
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Lemma 5.9. For every x′ = (x′
j,e)j∈J,e∈E ∈ X we can construct a vector (ℓj,v)j∈J,v∈V of continuous

and monotonically increasing functions such that their derivatives (ℓ′
j,v)j∈J,v∈V satisfy (mcTF1) and

(mcTF2) for all ϕ ∈ [0, H], where we define

ϕi
j,u(ϕ) := min { φ ≥ 0 | ℓi,u(φ) = ℓj,u(ϕ) } and y′

j,e(ϕ) :=
∑

i∈J\{ j }

x′
i,e(ϕi

j,u(ϕ)) ·
ℓ′

j,u(ϕ)
ℓ′

i,u(ϕi
j,u(ϕ))

.

Furthermore, the mapping (x′
j,e)j∈J,e∈E 7→ (ℓj,u)j∈J,u∈V is weak-strong continuous.

Proof. We prove the existence by extending the functions step by step. First, we initialize ℓj,v(0) with
the shortest distance from sj to v, only considering the transit times. For technical reasons we define
the ℓ-functions also for negative values by setting ℓj,u(ϕ) := ℓj,u(0) − ϕ

rj
for all ϕ < 0. Furthermore,

we assume that x′ is defined on R with x′
j,e(ϕ) = 0 for all ϕ /∈ [0, H].

For the extension step suppose that there is a θ0 ≥ 0 such that each earliest arrival time function ℓj,v

is already defined on an interval (−∞, ϕj,v] with ℓj,v(ϕj,v) = θ0 and that these ℓ-functions satisfy the
condition of the lemma on this interval. Clearly, this is given for θ0 = 0 as (mcTF1) and (mcTF2)
only have to hold for non-negative ϕ.
We are going to extend each function ℓj,v such that the properties hold up to some θ0 + α.
For v = sj we set

ℓj,sj
(ϕ) := ϕ

rj
.

In order to extend ℓj,v for v ̸= sj we consider all incoming arcs e = uv ∈ δ−
v that are active for ϕj,u

according to the function values from the past that are defined already. In other words, we define

δ′
v :=

{
e = uv ∈ δ−

v

∣∣ ℓj,u(ϕj,u) + τe ≤ ℓj,v(ϕj,u)
}

.

Since we consider strictly positive transit times this implies ℓj,v(ϕj,u) ≥ ℓj,u(ϕj,u) + τe = θ0 + τe > θ0,
and hence, ϕj,v < ϕj,u, for all e = uv ∈ δ′

v.
We define for all ϕ ∈ [ϕj,v, ϕj,u)

ϕi
j,u(ϕ) := min { φ ≥ 0 | ℓi,u(φ) = ℓj,u(ϕ) } and y′

j,e(ϕ) :=
∑

i∈J\{ j }

x′
i,e(ϕi

j,u(ϕ)) ·
ℓ′

j,u(ϕ)
ℓ′

i,u(ϕi
j,u(ϕ))

.

Here, ℓ′
j,u and ℓ′

i,u are the derivatives of the corresponding functions ℓj,u and ℓi,u, which are well-
defined on (−∞, ϕj,u) and (−∞, ϕi

j,u(ϕj,u)), respectively, as ℓi,u(ϕi
j,u(ϕj,u)) = ℓj,u(ϕj,u) = θ0.

To determine the earliest arrival time of ϕ at v when using arc e = uv we define

ρj,e(ϕ) :=


x′

j,e(ϕ)+y′
j,e(ϕ)

νe
if ℓj,u(ϕ) + τe < ℓj,v(ϕ),

max
{

ℓ′
j,u(ϕ), x′

j,e(ϕ)+y′
j,e(ϕ)

νe

}
else.

Finally, we extend the earliest arrival time ℓj,v for ϕ ∈ (ϕj,v, ϕj,v + ε] by

ℓj,v(ϕ) := ℓj,v(ϕj,v) + min
e∈δ′

v

∫ ϕ

ϕj,v

ρj,e(ξ) dξ.

If we choose ε to be small enough, such that ϕj,v + ε ≤ ϕj,u for all u with uv ∈ δ′
v, the right side is

always well-defined. Clearly, the extended function ℓj,v is continuous and monotonically increasing,
and by construction it satisfies (mcTF2), since an active arc has a positive waiting time at ℓj,u(ϕ) if,
and only if, ℓj,u(ϕ) + τe < ℓj,v(ϕ).
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Note that all ℓ′
j,v are bounded from above, as x′

j,e is bounded, and therefore, there exists an α > 0
independent of θ0 such that we can extend all ℓ-functions to θ0 + α. By iteratively applying this
extension step we end up with ℓ-functions that are at least defined on [0, H].
As the procedure only depends on the x-functions this construction provides a mapping x′ 7→ ℓ,
which is weak-strong continuous as the integration operator on compact intervals is weak-strong
continuous in L2 as we have shown in Lemma 2.7 on page 21. Furthermore, all operations we
used, such as taking sums, minima, maxima and doing time-shifting are continuous mappings when
considering the L2-norm. As x′ → ℓ is a composition of continuous functions with a weak-strong
continuous function it is also weak-strong continuous.

Theorem 5.15.
Consider an acyclic graph G′ = (V, E′) with sources S, sink t, capacities νe and a subset of
arcs E∗ ⊆ E′. Suppose that every node is reachable by some source. Then there exists a thin flow(
(x′

j)j∈J , (x′
e)e∈E , (ℓ′

v)v∈V

)
with resetting on E∗.

Proof. We consider the following compact, convex, and non-empty set

X :=

 ((x′
j)j∈J , (x′

e)e∈E

) ∣∣∣∣∣∣ x′
j ≥ 0,

∑
j∈J

x′
j = 1, (x′

e)e∈E ∈ X
(
E′, (x′

j)j∈J

) 
and the set-valued map Γ: X → 2X defined by

x′ 7→

{
y′ ∈ X

∣∣∣∣∣ y′
j = 0 for all j ∈ J with ℓ′

sj
<

x′
j

rj
,

y′
e = 0 for all e = uv ∈ E′ with ℓ′

v < ρe(ℓ′
u, x′

e)

}
.

Here, (ℓ′
v)v∈V are the node labels associated with x′ given by the following equations

ℓ′
sj

= min
({

x′
j

rj

}
∪ { ρe(ℓ′

u, x′
e) | e = usj ∈ E′ }

)
for j ∈ J,

ℓ′
v = min

e=uv∈E′
ρe(ℓ′

u, x′
e) for v ∈ V \ S,

which are uniquely defined due to the fact that G′ is acyclic. In order to use Kakutani’s fixed point
theorem, as it is denoted in Theorem 2.9 on page 22, we prove that all conditions are satisfied:

• The set Γ(x′) is non-empty, because if we consider exactly the sources with ℓ′
sj

= x′
j

rj
and the

arcs e = uv with ℓ′
v = ρe(ℓ′

u, x′
e), then there has to be at least one path P from such a source

sj to the sink t. If we set y′
j = 1 and y′

e = 1 for all arcs e on P and every other value to 0 we
obtain an element in Γ(x′).

• Clearly, Γ(x′) is convex since the sources and arcs that can be used for sending flow are fixed
within the set.

• In order to show that { (x′, y′) | y′ ∈ Γ(x) } is closed let (xn, yn)n∈N be a sequence within this
set, i.e., yn ∈ Γ(xn). Since both sequences, (xn)n∈N and (yn)n∈N, are contained in the compact
set X they both have a limit x∗ and y∗ within X. Let (ℓn)n∈N be the sequence of associated
node labels of (xn) and ℓ∗ the node label of x∗. Note that the mapping x′ 7→ ℓ′ is continuous,
and therefore, it holds that ℓ∗ = limn→∞ ℓn.

We now prove that y∗ ∈ Γ(x∗). Suppose for contradiction that there is a j ∈ J with y∗
j > 0

and ℓ∗
sj

<
x∗

j

rj
. Then there has to be an n0 ∈ N with yn

j > 0 and ℓn
sj

<
xn

j

rj
for all n ≥ n0. But this
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is a contradiction to yn ∈ Γ(xn). Now suppose that there is an arc e = uv ∈ E′ with y∗
e > 0

and ℓ∗
v < ρe(ℓ∗

u, x∗
e). But again, since ρe is continuous there has to be an n0 ∈ N such that

yn
e > 0 and ℓn

v < ρe(ℓn
u, xn

e ) for all n ≥ n0. Hence, { (x′, y′) | y′ ∈ Γ(x) } is closed.

Since all conditions for Kakutani’s fixed point theorem are satisfied, there has to be a fixed point x∗

of Γ. Let ℓ∗ be the corresponding node labeling. We show that it satisfies the thin flow condi-
tions (msTF1) to (msTF4). If we have x∗

j > 0, then ℓ∗
sj

= x∗
j

rj
follows from x∗ ∈ Γ(x∗) and if x∗

j = 0

it holds that 0 ≤ ℓ∗
sj

≤ x∗
j

rj
= 0, and therefore, we have equality in both cases, which yields (msTF1).

Equations (msTF2) and (msTF3) are satisfied by the construction of ℓ∗. Finally, for every arc
e = uv ∈ E′ with x∗

e > 0 it holds that ℓ∗
v = ρe(ℓ∗

u, x∗
e) since x∗ ∈ Γ(x∗), which shows (msTF4). This

shows that x∗ together with ℓ∗ forms a thin flow with resetting which completes the proof.
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Spillback and Kinematic Waves 6
In the base model the deterministic queuing allows for arbitrarily long queues and congestions will
never expand over multiple road segments. This is of course a huge drawback when considering
real-world scenarios since long traffic jams are a huge problem in highly congested networks and, in
general, they are very important to take into consideration for road planning.

Spillback. As a first aspect, we extend the base model by spillback, an effect that can be observed
in daily traffic situations. For example, spillback occurs on a highway, when a bottleneck causes
a long traffic jam that blocks exits upstream, or during rush hour in a big city where a crossing is
impassable due to the congestion on an intersecting road. We incorporate this into the flow over
time model by adding a storage capacity to each arc. This way, arcs can become full leading to a
reduction of the inflow rate, and thus, causing queues on preceding arcs to grow.

Kinematic waves. Furthermore, traffic congestions are observed to move upstream after a bottleneck
has been removed, as vehicles need a certain reaction time to close the gap when a preceding car
accelerates. In other words, the gaps between vehicles move backwards over time, which causes a
wave-like motion of the congestion. This phenomenon is therefore called kinematic wave and it
was first studied from a mathematical perspective by Lighthill and Whitham [63, 64]. In order to
capture this behavior, we model the gaps between the vehicles by an additional flow over time that
travels in the inverse direction and also occupies space on each arc. We will show in an example that
this enables us to create the typical real-world phenomenon, where a traffic jam on a highway slowly
travels upstream.

It is no surprise that spillback and kinematic waves are of great interest for traffic planners and that
these are core features of recent traffic simulation tools. Hence, introducing spillback and kinematic
waves is an important step towards closing the gap between mathematical models and simulations.
The work presented in this chapter was developed in collaboration with Laura Vargas Koch and the
spillback aspect was presented at ACM-SIAM Symposium on Discrete Algorithms (SODA19) [87].

6.1 Modeling Kinematic Wave Road Networks
In order to give an intuitive idea of the feature extensions we discuss in this chapter, we extend the
basic road model from Section 3.1.

Road model. We consider, once more, a one way road segment (depicted on the left side of
Figure 6.1) with a length ℓ, a width or number of lanes w as well as a speed limit v1. Furthermore,
we consider a maximal exit speed v2, with which vehicles leave the segment when the succeeding
roads are free. Note that v2 might be smaller than the speed limit v1 due to the geometry of
succeeding roads, for example intersection with give way signs or tight curves. Finally, we have
a gap speed vgaps that describes how fast the gaps between vehicles travel upstream if the road is
congested. Traffic scientists often assume this speed to be globally constant at about 15 km

h [24].
Similar to the base model the incoming and outgoing traffic at time θ is denoted by f+(θ) and f−(θ)
and the length of the traffic jam by j(θ). Note that this time the traffic jam length might reach
the road segment length, which means that the road is fully congested. Furthermore, the width w
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Figure 6.1: On the left: A road segment of length ℓ, width w, inflow speed limit v1, outflow speed limit v2 and
backwards gap speed vgap. Atomic vehicles enter over time (given by f+(θ)) and queue up in a
traffic jam of length j(θ) before leaving the arc (denoted by f−(θ)). On the right: An arc in the
flow over time model with spillback and kinematic waves. We consider a transit time θ, a storage
capacity σ, in- and outflow capacities ν+ and ν− as well as a gap transit time η. A flow over time is
represented by the in- and outflow rates f+(θ), f−(θ), the queue size z(θ), the arc load d(θ) and
the gap outflow rate g(θ) for all times θ ∈ [0, ∞).

together with the speed limits v1 and v2 induces an upper limit on the incoming and outgoing traffic,
i.e., an in- and outflow capacity.
After entering, vehicles first traverse the segment with the maximal speed of v1 until they reach the
end of the traffic jam where they wait in line and only move forward with a speed of vgap when there
is enough free space in front of them. When reaching the end of the segment the road users first in
line can enter the next road segment provided that it is either not full and still has inflow capacity
left, or it is full but has a gap at the very beginning. Note that a road is full when the cars in the
traffic jam together with the gaps occupy the whole segment, or in other words, when j(θ) = ℓ.
In this vague model congestions can occupy multiple segments and might even block preceding
intersections. In addition, the free spaces, created by leaving vehicles, need time to traverse the road
in the inverse direction and new cars can only enter a full link if one of these spaces reaches the tail.
These are the two key properties for spillback and kinematic waves.

Arc model. In the flow over time model (shown on the right side of Figure 6.1) we equip each arc
with a transit time τ corresponding to v1

ℓ , an in- and outflow capacity ν+ and ν− corresponding to
w · v1 and w · v2, a storage capacity σ corresponding to ℓ · w and a gap transit time η corresponding
to vgap

ℓ . The flow is represented by an inflow rate f+(θ), an outflow rate f−(θ) and a point queue
z(θ). The gaps are modeled by a flow over time traversing upstream denoted by a gap outflow rate
of g(θ). The load d(θ) is the total amount of flow and gaps currently located on the arc and the link
is full when this value reaches the storage capacity.
As in the base model, particles first traverse the complete arc, which takes τ time, before they line
up at the point queue located right before the head of the arc. In the best case, flow at the front of
the queue leaves the arc with a rate of ν−. But if the inflow rate of a successive arc is exceeded,
the outflow rate might be throttled to match this restriction. At every point in time the leaving flow
creates a gap flow that traverses from the head to the tail of the arc and occupies space as well. If an
arc gets full, i.e., if d(θ) = σ, the inflow rate is further restricted and cannot exceed the gap outflow
rate at this point in time. In other words, particles can only enter the arc if there is enough free space
(enough gaps) arriving at the entrance.

6.2 Flow Dynamics for Spillback and Kinematic Waves
In this section we properly define the flow over time model that implements spillback and kinematic
waves based on the intuition given above. As the spillback aspect is essential for modeling kinematic
waves, we simply call it kinematic wave model. Note that this is a generalization of the base model
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as it is always possible to disable both features by setting the inflow capacity large enough and the
storage capacity to ∞. To obtain a model that only implements spillback but not kinematic waves it
is possible to choose the gap transit time as 0.

Networks. We consider a network consisting of a directed graph G = (V, E) with a source s and a
sink t such that each node is reachable by s. At s we have given a network push rate of R ∈ (0, ∞)
and every arc e ∈ E is equipped with a transit time τe ∈ [0, ∞), an inflow capacity ν+

e ∈ (0, ∞), an
outflow capacity ν−

e ∈ (0, ∞), a storage capacity σe ∈ (0, ∞] as well as a gap transit time ηe ∈ [0, ∞).
To ensure that the sum of traversing flow and traversing gaps can never fill up an arc on its own and
that for full arcs at least some positive gap flow arrives at the tail, we require the following lower
bound on the storage capacity of every arc e.

σe > ν+
e · τe + max { ν+

e , ν−
e } · ηe. (6.1)

Furthermore, we require the total transit time of each directed cycle to be strictly positive.

Flow over time. As before, a flow over time is a family of locally integrable and bounded functions
f = (f+

e , f−
e )e∈E that conserves flow on all arcs e:

F −
e (θ + τe) ≤ F +

e (θ) for all θ ∈ [0, ∞) (6.2)

and at all nodes v ∈ V \ { s, t }: ∑
e∈δ+

v

f+
e (θ) −

∑
e∈δ−

v

f−
e (θ) = 0.

Note that this time the network inflow rate r(θ) might be reduced due to spillback, and therefore,
we only require

r(θ) :=
∑

e∈δ+
s

f+
e (θ) −

∑
e∈δ−

s

f−
e (θ) ∈ (0, R].

Queues, gap flows and arc loads. The queue at time θ is, once again, given by

ze(θ) := F +
e (θ − τe) − F −

e (θ).

This time however, a gap flow ge is created whenever flow leaves the arc. Thereby, ge has the same
rate as the outflow rate f−

e but it travels backwards from the head to the tail in ηe time. We measure
this gap flow by the rate of gaps ge(θ) that reach the tail. Hence, for all θ ≥ ηe we have

ge(θ) := f−
e (θ − ηe)

and for θ < ηe we set ge(θ) := 0. The total volume of gaps on an arc e is therefore given by

Ge(θ) :=
∫ θ+ηe

θ

ge(ξ) dξ.

The arc load de of an arc e at time θ is the total amount of flow on the arc, traversing or in the queue,
plus the total volume of gaps in the arc. More precisely, we have

de(θ) := F +
e (θ) − F −

e (θ) + Ge(θ).
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We say an arc e is full at time θ if the load reaches the storage capacity, i.e., if de(θ) ≥ σe. However,
we will show later on that the arc load can never exceed the storage capacity in a feasible flow over
time.

Flow bounds. If there is enough remaining space on an arc the inflow is only bounded by the inflow
capacity ν+

e , but whenever an arc is full we only allow an inflow rate which is at most the gap rate
reaching the tail of the arc. Hence, we define the inflow bound by

b+
e (θ) :=

min { ge(θ), ν+
e } if e is full at time θ,

ν+
e else.

Furthermore, the push rate is the flow rate, with which the flow would leave arc e at time θ if it was
not restricted by succeeding arcs. It is defined by

b−
e (θ) :=

ν−
e if ze(θ) > 0,

min { f+
e (θ − τe), ν−

e } else.

Due to spillback, however, it can happen that the actual outflow rate f−
e (θ) is strictly smaller than

the push rate b−
e (θ). In this case we call arc e throttled at time θ.

Feasibility conditions and spillback factor. In order to be feasible a flow over time f must satisfy
the following four conditions:

• Inflow condition: For all e ∈ E and all θ ∈ [0, ∞) we have

f+
e (θ) ≤ b+

e (θ).

• Fair allocation condition: For every node v and all times θ ∈ [0, ∞) there exists a c ∈ (0, 1]
such that for all incoming arcs e ∈ δ−

v we have

f−
e (θ) = min { b−

e (θ), ν−
e · c } .

For v = s the network inflow rate must, additionally, satisfy r(θ) = R · c.

• No-slack condition: For every node v and for all times θ ∈ [0, ∞) we have that if there is at
least one incoming arc that is throttled at time θ then there has to be at least one outgoing
arc e ∈ δ+

v that satisfies f+
e (θ) = b+

e (θ).

• No-deadlock condition: At any point in time θ the set of arcs with ηe = 0 that are full at
time θ must be cycle free.

For every node v and every time θ we call the maximal value c ∈ (0, 1] that satisfies the fair allocation
condition the spillback factor of node v at time θ denoted by cv(θ).
In the following we want to give some intuition for all four feasibility conditions. The purpose of the
inflow condition is pretty clear. As discussed above, in order to model spillback the inflow rate needs
to be restricted not only by the inflow capacity but also by the gap flow in the case that the arc is full.
The intuitive idea behind the fair allocation condition is the following. Whenever the total outgoing
flow of node v (sum of all inflow rates of all outgoing arcs) is restricted, for example, because a
succeeding arc is full, all incoming flow of v needs to merge. To obtain a fair allocation we allow an
outflow rate of each incoming arc proportional to its outflow capacity. This time a link with large
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v

Figure 6.2: In the case that the total push rate exceeds the total outgoing flow of a node v we need to throttle
the incoming arcs to preserve flow conservation. For this we determine a value c such that the fair
allocation condition is satisfied. We imagine valves after each incoming arc that are shut at the
beginning. By gradually increasing c from 0 to 1 we open the valves proportionally to the outflow
capacities, i.e., the width of the valve of e equals c · ν−

e . We stop at the maximal value such that
the total incoming flow through the valves matches the total outgoing flow. This number is called
spillback factor and in this example we have cv(θ) = 3

4 .

outflow capacity can send more flow into v than a link with small outflow capacity. Figuratively
speaking, one can imagine a valve right behind the bottleneck of each incoming arc as it is depicted
in Figure 6.2. For c = 0 these valves are completely closed. By increasing c in a continuous way we
open the valves proportionally to the outflow capacities until the total incoming flow of v matches
the total outflow of v, such that the flow conservation holds. For c = 1 the outflow of each arc in δ−

v

is not restricted at all, and therefore, it matches the push rate.
The reason for the no-slack condition is simple. If some incoming arc e of some node v is throttled
(which can only happen if cv(θ) < 1) then there has to be a reason for this. The only possible reason
is, that there is an outgoing arc for which the amount of flow that desires to enter this arc exceeds
the inflow bound. Hence, this happens exactly when we have spillback. But whenever there is no
restriction on any outgoing arc, no incoming arc should be throttled.
Finally, the no-deadlock condition has a more technical reason. To ensure that the spillback fac-
tor cv(θ) is always well-defined and strictly positive the inflow bounds b+

e1
of all outgoing arcs e1 ∈ δ+

v

of node v should not directly depend on the outflow rate f−
e2

(θ) of some incoming arc e2 ∈ δ−
v . To

illustrate the issue, consider a directed cycle of, lets say, three arcs e1, e2, e3 that are full at some
point in time θ and suppose the gap transit times of all three arcs are 0. If in this setting all particles
want to stay in the cycle (and no external flow wants to enter) then the other feasibility conditions
would imply that

f+
e1

(θ) = f−
e1

(θ) = f+
e2

(θ) = f−
e2

(θ) = f+
e3

(θ) = f−
e3

(θ).

This can easily be seen as the inflow condition would imply that the inflow rate f+
e1

(θ) is smaller or
equal to the inflow bound b+

e1
(θ), which itself is smaller or equal to ge1(θ) = f−

e1
(θ). But by the flow

conservation we have f−
e1

(θ) = f+
e2

(θ), which again has to be smaller or equal to the inflow bound
of e2. Continuing the argumentation around the cycle shows that all in- and outflow rates have to
be equal. Note, however, that this common flow rate is not uniquely determined. In fact, any flow
rate strictly larger than 0 but less than the smallest capacity in the cycle (counting in- and outflow
capacities) would lead to a feasible flow over time. In principal this would be fine, even though we
prefer a unique flow over time for given route choices of the particles. However, as soon as some
external flow would try to enter the cycle, everything would come to a complete stop, causing all in-
and outflow to be equal to 0. In order to keep the theory as comprehensible as possible we exclude
these strong deadlocks from the model and require instead the property that, whenever there is a
queue on an arc, there has to be some positive outflow rate (see Lemma 6.2).
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Note, however, that we allow for weak deadlocks. If at least one of the arcs in the cycle has a
positive gap transit time, the inflow bound of some arc e1 ∈ δ+

v does not depend on the outflow rate
of an arc e2 ∈ δ−

v at the very same point in time. This ensures that at least some small flow rate can
leave each arc, even though this rate converges to 0 over time. In this scenario we will end up with
infinite waiting times, but at least the outflow rate at each arc is always strictly positive. It is worth
noting, that even though this extreme case can be handled by the model, for a Nash flow over time
neither the hard deadlock nor the soft deadlock ever occur.
The four feasibility conditions above suffice to show the following.

Lemma 6.1. Given a feasible flow over time f , the following holds for all arcs e and all times θ:

(i) Outflow capacity condition: f−
e (θ) ≤ ν−

e .

(ii) Non-deficit condition: ze(θ) ≥ 0.

(iii) Storage condition: de(θ) ≤ σe.

Proof.

(i) The outflow capacity condition follows immediately from the fair allocation condition.

(ii) Assume for contradiction that ze(θ) < 0 at some point in time θ. Since ze is continuous
there exists an interval (θ0, θ1] with ze(θ0) = 0 and ze(θ) < 0 for all θ ∈ (θ0, θ1]. By the fair
allocation condition and the definition of the push rate for the case of ze(θ) ≤ 0 it follows that
f−

e (θ) ≤ b−
e (θ) ≤ f+

e (θ − τe) for all θ ∈ [θ0, θ1]. This leads to a contradiction as

0 > ze(θ1) − ze(θ0) =
∫ θ1

θ0

f+
e (ξ − τe) − f−

e (ξ) dξ ≥ 0.

(iii) Assume for contradiction that de(θ) > σe at some point in time θ. By the continuity of de

and the fact that de(0) = 0 it follows that there exists an interval (θ0, θ] with de(θ0) = σe and
de(θ) > σe for all θ ∈ (θ0, θ]. The inflow condition yields that f+

e (θ) ≤ ge(θ) for all θ ∈ [θ0, θ].
This leads to a contradiction since

0 < de(θ) − de(θ0) =
∫ θ

θ0

f+
e (ξ) − f−

e (ξ) + ge(ξ + ηe) − ge(ξ) dξ =
∫ θ

θ0

f+
e (ξ) − ge(ξ) dξ ≤ 0.

Note that (ii) is equivalent to the flow conservation on arcs (6.2). But for the proof we do not use
flow conservation on arcs, and therefore the feasibility conditions imply (6.2), exactly as it is the
case in the base model.

Congestion suffix. In order to consider gaps in traffic congestions over multiple arcs we need
the following definition. A congestion suffix at time θ1 is a path (e1, . . . , ek) such that for all
i ∈ { 1, 2, . . . , k − 1 } we have that ei is full at time θi with f+

ei
(θi) = b+

ei
(θi) and was throttled at time

θi+1 := θi − ηei
. Furthermore, arc ek is not full at time θk or was not throttled at time θk − ηek

, but
is also holds that f+

ek
(θk) = b+

ek
(θk).

We can prove that every full arc is part of a congestion suffix, which helps us to show that whenever
an arc has a positive queue it also has a positive outflow rate. This property will be important later
on. Furthermore, we show that full arcs always have a positive queue.
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Lemma 6.2. For a feasible flow over time f the following statements hold for all θ ∈ [0, ∞):

(i) If e is full at time θ we have ze(θ) > 0.

(ii) If e is full at time θ we have ze(θ − ηe) > 0.

(iii) Every arc that is full at time θ with f+
e (θ) = b+

e (θ) is part of a (finite) congestion suffix.

(iv) There is a function ε : [0, ∞) → (0, 1) depending only on the network but not on f such that every
arc e with ze(θ) > 0 satisfies f−

e (θ) ≥ ε(θ) and b+
e (θ) ≥ ε(θ).

The proofs of (i) and (ii) follow immediately from the lower bound on the storage capacity (6.1) and
(iii) can be shown from the definition of congestion suffixes in combination with the no-deadlock
condition. Finally, (iv) follows by induction along a congestion suffix. As such suffixes can extend
over cycles multiple times, the lower bound on the outflow rate does not only depend on the network
but also on the time that has passed since flow has been sent into the network. The formal proofs
can be found in the appendix on page 115.

Waiting times. To determine the time a particle spends in the queue we follow a similar approach
as introduced for time-dependent capacities in Chapter 4. Note that due to spillback the arc might be
throttled during the waiting period, and therefore, the outflow capacity and the queue size alone do
not provide the necessary information to determine the waiting time. Instead, we need to consider
the actual outflow rate. Hence, for a given feasible flow over time f the waiting time function
qe : [0, ∞) → [0, ∞] of an arc e is defined by

qe(θ) := min
{

q ≥ 0

∣∣∣∣∣
∫ θ+τe+q

θ+τe

f−
e (ξ) dξ = ze(θ + τe)

}
.

Note that it might be the case that
∫∞

θ+τe
f−

e (ξ) dξ < ze(θ + τe). In this case we define qe(θ) := ∞.

Exit times. Similar to the base model we can now define the exit times Te : [0, ∞) → [0, ∞] by

Te(θ) := θ + τe + qe(θ).

Note that if qe(θ) = ∞ the exit time also equals ∞.
With all these definitions we can show next that Lemma 3.1 can be transferred to this kinematic
wave model with only some minor changes.

Lemma 6.3. For a feasible flow over time f it holds for all e ∈ E, v ∈ V and θ ∈ [0, ∞) that:

(i) qe(θ) > 0 ⇔ ze(θ + τe) > 0.

(ii) ze(θ + τe + ξ) > 0 for all ξ ∈ [0, qe(θ)).

(iii) F +
e (θ) = F −

e (Te(θ)) whenever Te(θ) < ∞.

(iv) For θ1 < θ2 with F +
e (θ2) − F +

e (θ1) = 0 and ze(θ2 + τe) > 0 we have Te(θ1) = Te(θ2).

(v) If Te(θ) < ∞ and f−
e (Te(θ)) = 0 then F +

e (θ + qe(θ)) − F +
e (θ) = 0.

(vi) If Te(θ) < ∞ the push rate functions satisfy

b−
e (Te(θ)) =

ν−
e if F +

e (θ + qe(θ)) − F +
e (θ) > 0,

min { f+
e (Te(θ) − τe), ν−

e } else.
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(vii) The functions Te are monotonically increasing.

(viii) The functions Te and qe are differentiable at almost all θ with qe(θ) < ∞.

(ix) For almost all θ ∈ [0, ∞) with qe(θ) < ∞ we have

q′
e(θ) =


f+

e (θ)
f−

e (Te(θ)) − 1 if f−
e (Te(θ)) > 0,

−1 else if ze(θ + τe) > 0,

0 else.

Even though the results are basically the same as the statements of Lemma 3.1, the proofs are more
sophisticated in most cases. They can be found with all technical details in the appendix on page 116.

Example. One of the main features we want to capture with the kinematic wave model are the
congestion waves that can be observed in real-world traffic. These occur when there is a temporary
bottleneck on a heavily frequented highway. The bottleneck creates a traffic jam but even after the
bottleneck is removed the congestion persists and moves slowly upstream. This is a phenomenon
that cannot be modeled in the base model or a spillback model without kinematic waves. However,
as the example in Figure 6.3 shows, this is exactly what happens in the kinematic wave model. Note
that arcs downstream remain full, but after some point in time they do not throttle the preceding arc
anymore and a big part of the arc load is due to the gap flow. In other words, road users would not
experience these arcs as full as there is less traffic and no rate reduction.

θ = 0
53

fullfull

θ = 4
13

fullfull

4

full

1

θ = 1
44

fullfull

1
θ = 5

12

fullfull
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full
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3
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3
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θ = 3
24
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full

θ = 7
11

fullfull

2
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2
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Figure 6.3: Example of a backwards moving wave over time (fist left column from top to bottom then right
column from top to bottom). An inflow rate of 2 enters a long road that is congested due to some
temporary bottleneck (during θ < 0). Every road segment is identical with τe = ηe = ν+ = ν− = 2
and σe = 9. Thick blue lines correspond to a flow rate of 2 and thin blue lines to a rate of 1. Within
each node we display the throughput rate from this time onwards up to the next time step. Below
each arc the gap flow is visualized. Arcs that are full but do not throttle the preceding arc are
labeled with a gray “full”. After the bottleneck is removed at time 0 the flow can leave the network
with rate 2 but due to the kinematic waves it takes time until the flow rate upstream benefits from
this.
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6.3 Nash Flows Over Time
In this section we define Nash flows over time in the kinematic wave model and transfer the main
results from the base model. We keep the structure very similar to the base version but most of the
proofs are much more sophisticated than before.

Earliest arrival times. To determine at which time a particle ϕ ∈ R≥0 can arrive at some node v for
a given feasible flow over time f we first have to determine the earliest time this particle can enter
the network at s. This is given by the source arrival time defined by

ℓs(ϕ) := min
{

θ ≥ 0

∣∣∣∣∣
∫ θ

0
r(ξ) dξ = ϕ

}
. (6.3)

This is basically the same as if particle ϕ stands in a queue right before the source at time 0 with all
particles [0, ϕ) in front of it. For all other nodes v ∈ V \ { s } we define the earliest arrival time by

ℓv(ϕ) := min
e=uv∈δ−

v ,
ℓu(ϕ)<∞

Te(ℓu(ϕ)). (6.4)

If the minimum is empty we set ℓv(ϕ) := ∞. Clearly, ℓv is monotone and almost everywhere
differentiable on the set { ϕ ∈ R≥0 | ℓv(ϕ) < ∞ } as it is a minimum of functions with these properties;
see Lemma 2.3 and Lemma 6.3 (vii) and (viii).

Active, resetting and spillback arcs. The sets of active and resetting arcs ar, once more, given by

E′
ϕ := { e = uv ∈ E | ℓu(ϕ) < ∞ and ℓv(ϕ) = Te(ℓu(ϕ)) }

and E∗
ϕ := { e = uv ∈ E | ℓu(ϕ) < ∞ and qe(ℓu(ϕ)) > 0 } .

Clearly, the current shortest paths network G′
ϕ = (V, E′

ϕ) is cycle free for every ϕ ∈ R≥0, since we
require the sum of transit times in each cycle to be strictly positive. Furthermore, we call arcs that
are full at ℓu(ϕ) spillback arcs denoted by

Ēϕ := { e = uv | ℓu(ϕ) < ∞ and de(ℓu(ϕ)) = σe } .

Dynamic equilibria. Again, a dynamic equilibrium is a feasible flow over time where almost every
particle chooses a fastest route from s to t. As the active arcs once more indicate which paths are the
fastest the definition of Nash flows over time is exactly the same as in the base model.

Definition 6.4 (Nash flow over time in the kinematic wave model).
A feasible flow over time f in the kinematic wave model is a Nash flow over time, also called
dynamic equilibrium, if the following Nash flow condition holds:

f+
e (θ) > 0 ⇒ θ ∈ ℓu(Φe) for all arcs e = uv ∈ E and almost all θ ∈ [0, ∞), (N)

where Φe := { ϕ ∈ R≥0 | e ∈ E′
ϕ } is the set of flow particles for which arc e is active.

As a first important step, we show that the earliest arrival times in a Nash flow over time will never
be ∞, and therefore, user equilibria do not create any deadlocks.
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Theorem 6.5.
Given a Nash flow over time in the kinematic wave model, for every e ∈ E and v ∈ V we have that
qe(θ), Te(θ), ℓv(θ) < ∞ for all θ ∈ [0, ∞).

Proof. In order to simplify the proof we assume that all outgoing arcs from s have inflow capacities
greater or equal to the network push rate R and infinite storage capacities. This ensures that the
network inflow rate will never be throttled, i.e., r(ϕ) = R for all ϕ ∈ R≥0. This assumption is without
loss of generality, since we can always modify the network by adding a new source and a new arc
e∗ = s∗s with ν+

e∗ = ν−
e∗ = R, τe∗ = ηe∗ = 0 and σe∗ = ∞. Nash flows over time will then be exactly

the same in the new network and the only difference is that, when we have spillback on the original
source s, the flow queues on the new arc e∗ instead of outside of the network.
With this assumption we first show that ℓv(ϕ) < ∞. Assume for contradiction that there is a first
particle ϕ0 where some ℓ-label equal ∞. Since we have ℓs(ϕ0) = ϕ0

R by our assumption, there has
to be some arc e = uv with ℓu(ϕ0) < ∞ = ℓv(ϕ0), and thus qe(ℓu(ϕ0)) = ∞. This is only possible
if f−

e (ξ) → 0 for ξ → ∞. In other words, for some ξ0 > 0 arc e would be throttled for all times
ξ > ξ0. Consequently, for each ξ ≥ ξ0 there has to be some arc e′ ∈ δ+

v that is full due to the
no-slack condition. For some ε < min { σe′ − ν−

e′ · ηe′ | e′ ∈ E } we consider the particle ϕ1 := ϕ0 − ε,
for which ℓt(ϕ1) < ∞. At time ℓt(ϕ1) all particles [0, ϕ1) have left the network, and therefore, the
amount of flow in the network that is in front of particle ϕ0 equals ε at this point in time. But this is
a contradiction since for every arc e′ ∈ δ+

e that is full at time ℓt(ϕ1) we have

σe′ = de′(ℓt(ϕ1)) ≤ ε + Ge′(ℓt(ϕ1)) < ε + ν−
e · ηe < σe′ .

Hence, ℓv(ϕ) < ∞ for all v ∈ V and all ϕ. It follows that this also holds for qe(θ) and Te(θ) for all
e ∈ E at all times θ.

With this, Lemma 3.3 transfers to the kinematic wave model one-to-one with the exact same proof,
which can be found in the appendix of Chapter 3 on page 47. In particular, we have that a feasible
flow over time f is a Nash flow over time if, and only if,

F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)) for all arcs e = uv and all particles ϕ.

The active, resetting and spillback arcs in a Nash flow over time have the following properties.

Lemma 6.6. Given a Nash flow over time the following holds for all times θ:

(i) E∗
ϕ ⊆ E′

ϕ.

(ii) E′
ϕ = { e = uv | ℓv(ϕ) ≥ ℓu(ϕ) + τe }.

(iii) E∗
ϕ = { e = uv | ℓv(ϕ) > ℓu(ϕ) + τe }.

(iv) Ēϕ ⊆ E′
ϕ.

(v) ℓu(ϕ) < ℓv(ϕ) for all e = uv ∈ Ēϕ.

The proofs of (i) to (iii) are exactly the same as for the base model (see Lemma 3.4) and can be
found on page 49. The last two statements follow with some elementary calculations and Lemma 6.2.
The details can be found in the appendix on page 118.
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Underlying static flow. In order to obtain some structural insight into Nash flows over time we
define, as in the base model, the underlying static flow for particle ϕ by

xe(ϕ) := F +
e (ℓu(ϕ)) = F −

e (ℓv(ϕ)).

For every particle ϕ we have that (xe(ϕ))e∈E is, once more, a static s-t-flow of value ϕ and by taking
the derivatives (x′

e(ϕ))e∈E we obtain a static s-t-flow of value 1 with

x′
e(ϕ) = f+

e (ℓu(ϕ)) · ℓ′
u(ϕ) = f−

e (ℓv(ϕ)) · ℓ′
v(ϕ). (6.5)

6.4 Spillback Thin Flows
In order to show the existence of Nash flows over time in the kinematic wave model, we show that
the derivatives of the underlying static (x′

e(ϕ))e∈E , corresponding to the strategy of the particles,
together with the node labels (ℓ′

v(ϕ))v∈V and the newly introduced spillback factors (cv(ϕ))v∈V form
a spillback thin flow. For a proper definition consider an acyclic directed graph G′ = (V, E′) with a
source s and a sink t where all nodes are reachable from s. Every arc e is equipped with an outflow
capacity ν−

e > 0 and an inflow bound b+
e > 0. Additionally, we are given a subset of arcs E∗ ⊆ E′

and a network push rate R.

Definition 6.7 (Spillback thin flow).
A static s-t-flow (x′

e)e∈E of value 1 together with two node labelings ℓ′
v ≥ 0 and cv ∈ (0, 1], for

all v ∈ V , is a spillback thin flow with resetting on E∗ if it fulfills the following conditions:

ℓ′
s = 1

cs · R
, (sTF1)

ℓ′
v = min

e=uv∈E′
ρe(ℓ′

u, x′
e, cv) for v ∈ V \ { s } , (sTF2)

ℓ′
v = ρe(ℓ′

u, x′
e, cv) for e = uv ∈ E′ with x′

e > 0, (sTF3)

ℓ′
v ≥ max

e=vw∈E′

x′
e

b+
e

for v ∈ V, (sTF4)

ℓ′
v = max

e=vw∈E′

x′
e

b+
e

for v ∈ V with cv < 1, (sTF5)

where

ρe(ℓ′
u, x′

e, cv) :=


x′

e

cv·ν−
e

if e = uv ∈ E∗,

max
{

ℓ′
u,

x′
e

cv·ν−
e

}
if e = uv ∈ E′\E∗.

Note that the inflow bounds b+
e are part of the input similar to the outflow capacities ν−

e . During the
construction of a Nash flow over time we will set b+

e = b+
e (ℓu(ϕ)) for all e = uv.

Similar to the base model, we have Condition (sTF2) to ensure that the node label ℓ′
v corresponds to

the slope of the earliest arrival time, Condition (sTF1) to make sure that ℓ′
s denotes the derivative of

the source arrival time and Condition (sTF3) to guarantee that flow is only sent along arcs that stay
active during the phase. Since the outflow capacities might be reduced due to spillback, we multiply
them by the spillback factors cv, which are additional parameters of the spillback thin flow.
However, we have two new conditions for every node v this time, which set the node label ℓ′

v in
correlation to the outgoing arcs e = vw ∈ δ+

v . To ensure that the outflow rate f+
e (ℓv(ϕ)) = x′

e(ϕ)
ℓ′

v(ϕ)

stays smaller than the inflow bound b+
e (ℓu(ϕ)) we require ℓ′

v ≥ x′
e

b+
e

in (sTF4). If spillback occurs,
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which implies that cv < 1, Condition (sTF5) provides that the no-slack condition is satisfied, since
l′
v = x′

e

b+
e

means that f+
e (ℓv(ϕ)) = b+

e (ℓv(ϕ)).
We also want to present another perspective: If we only consider (sTF1) to (sTF3) and set all
spillback factors cv to 1, we get exactly a thin flow with resetting in the base model (see Theorem 3.5
on page 33), where the ℓ′

v-labels are uniquely defined (Proposition 3.8 on page 36). So it might
happen that the inflow rate exceeds the inflow bound on some arcs. Hence, we introduce (sTF4) as a
lower bound on ℓ′

v. But since the labels in the base model are unique and they might not satisfy the
added lower bounds, we could not guarantee existence anymore. Introducing the spillback factors cv

as additional parameters enables the thin flow to reduce the effective capacity (cv · ν−
e ) on each arc,

and therefore, to increase the node label ℓ′
v until it satisfies the lower bound of (sTF4). Finally, to

ensure that the effective capacity is not reduced unnecessarily, we include (sTF5) to ensure that if cv

is reduced then only to the point that (sTF4) is tight.
In order to show this intuition mathematically we first show that the derivatives of a Nash flow over
time in the kinematic wave model are indeed spillback thin flows.

Theorem 6.8.
For almost all ϕ ∈ R≥0 the derivatives x′

e(ϕ) and ℓ′
v(ϕ) of a Nash flow over time f together with

the spillback factors cv(ℓv(ϕ)) form a spillback thin flow on the current shortest paths network
G′

ϕ = (V, E′
ϕ) with resetting on E∗

ϕ and inflow bounds b+
e (ℓu(ϕ)).

Proof. We fix a particle ϕ such that for all e = uv ∈ E the derivatives of xe, ℓv and Te ◦ ℓu exist and
x′

e(ϕ) = f−
e (ℓv(ϕ)) · ℓ′

v(ϕ) = f+
e (ℓu(ϕ)) · ℓ′

u(ϕ). Note that almost all particles satisfy these conditions.
For the sake of readability, let ℓ′

v := ℓ′
v(ϕ), x′

e := x′
e(ϕ), cv := cv(ℓv(ϕ)), b+

e := b+
e (ℓu(ϕ)), E′ := E′

ϕ

and E∗ := E∗
ϕ.

(sTF1) By (6.3) we have that
∫ ℓs(ϕ)

0 r(ξ) dξ = ϕ. Taking the derivative yields r(ℓs(ϕ)) · ℓ′
s(ϕ) = 1,

and therefore, the fair allocation condition implies

ℓ′
s(ϕ) = 1

r(ℓs(ϕ)) = 1
R · cs(ℓs(ϕ)) .

(sTF2) Applying the differentiation rule for a minimum (see Lemma 2.3 on page 17) on (6.4) yields

ℓ′
v = min

e=uv∈E′
T ′

e(ℓu(ϕ)) · ℓ′
u.

Note that E′ is precisely the set of arcs with ℓv(ϕ) = Te(ℓu(ϕ)), and therefore, exactly these arcs need
to be considered for the derivative. In the following we analyze the derivative of Te(ϕ) = ϕ+τe+qe(ϕ)
at the point ℓu(ϕ) for active arcs e = uv ∈ E′. Lemma 6.3 (ix) yields

T ′
e(ℓu(ϕ)) =


f+

e (ℓu(ϕ))
f−

e (ℓv(ϕ)) if f−
e (ℓv(ϕ)) > 0,

0 else if ze(ℓu(ϕ) + τe) > 0,

1 else.

First, we consider the case that f−
e (ℓv(ϕ)) = 0, which implies that x′

e = 0, and hence,

T ′
e(ℓu(ϕ)) · ℓ′

u =
{

0 if qe(ℓu(ϕ)) > 0,

ℓ′
u else,

}
= ρe(ℓ′

u, x′
e, cv).
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Next, we consider the case that f−
e (ℓv(ϕ)) > 0 and x′

e = 0. If e ̸∈ E∗, we have

f+
e (ℓu(ϕ)) = f+

e (ℓv(ϕ) − τe) ≥ b−
e (ℓv(ϕ)) ≥ f−

e (ℓv(ϕ)) > 0,

which implies ℓ′
u = x′

e

f+
e (ℓu(ϕ)) = 0. In both cases, whether e ∈ E∗ or not, we have

T ′
e(ℓu(ϕ)) · ℓ′

u = x′
e

f−
e (ℓv(ϕ))

= 0 = ρe(ℓ′
u, x′

e, cv).

Finally, we consider f−
e (ℓv(ϕ)) > 0 and x′

e > 0. This implies that xe(ϕ) = F +
e (ℓu(ϕ)) is strictly

increasing in [ℓu(ϕ), ℓu(ϕ) + ε], and therefore F +
e (ℓu(ϕ) + qe(ℓu(ϕ))) − F +

e (ℓu(ϕ)) > 0 if, and only if,
qe(ℓu(ϕ)) > 0. Together with Lemma 6.3 (vi) we obtain

b−
e (ℓv(ϕ)) =

ν−
e if e ∈ E∗,

min { f+
e (ℓu(ϕ)), ν−

e } if e ∈ E′\E∗.

Hence,

T ′
e(ℓu(ϕ)) · ℓ′

u = x′
e

f−
e (ℓv(ϕ))

= x′
e

min { cv · ν−
e , b−

e (ℓv(ϕ)) }

=


x′

e

cv·ν−
e

if e ∈ E∗

max
{

x′
e

f+
e (ℓu(ϕ)) ,

x′
e

cv·ν−
e

}
if e ∈ E′\E∗


= ρe(ℓ′

u, x′
e, cv).

(6.6)

In summary, we obtain

ℓ′
v = min

e=uv∈E′
T ′

e(ℓu(ϕ)) · ℓ′
u = min

e=uv∈E′
ρe(ℓ′

u, x′
e, cv).

(sTF3) For x′
e = f−

e (ℓv(ϕ)) · ℓ′
v > 0 we have ℓ′

v = x′
e

f−
e (ℓv(ϕ))

(6.6)= ρe(ℓ′
u, x′

e, cv).

(sTF4) By the inflow condition we obtain for all arcs e = vw that x′
e = f+

e (ℓv(ϕ)) · ℓ′
v ≤ b+

e · ℓ′
v.

(sTF5) Suppose we have cv < 1. The maximality of cv implies that there has to be at least one
incoming throttled arc and by the no-slack condition there has to be an outgoing arc e = vw with
f+

e (ℓv(ϕ)) = b+
e . Hence, x′

e = f+
e (ℓv(ϕ)) · ℓ′

v = b+
e · ℓ′

v. Together with (sTF4) we obtain (sTF5).

6.5 Existence of Spillback Thin Flows
In this section we show that for all acyclic current shortest paths networks G′ = (V, E′) with
arbitrary capacities, outflow bounds and resetting arcs E∗ there always exists a spillback thin flow.
Unfortunately, Kakutani’s fixed point theorem does not suffice to show this anymore, but we use a
finite dimensional variational inequality and the corresponding nonlinear complementarity problem
instead.

Variational inequality and nonlinear complementarity. As described in Section 2.5.1 the variational
inequality problem VI(X, Γ) for a finite index set I and a given subset X ⊆ RI as well as a mapping
Γ: X → RI is the following.

Find x ∈ X such that (y − x)T · Γ(x) ≥ 0 for all y ∈ X. (VI)
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The set of points that solves this variational inequality is denoted by SOL(X, Γ) and, in order to
show that this set contains at least one element, we have to ensure that X is non-empty, compact
and convex and that Γ is continuous, as we can then apply Theorem 2.6 (see page 19).
Recall that whenever X =×i∈I

[0, Mi] is a box then, given a solution of the variational inequality
x∗ ∈ SOL(X, Γ), we have that for every i ∈ I with x∗

i < Mi the nonlinear complementarity holds:

Γi(x∗) ≥ 0 and x∗
i · Γi(x∗) = 0. (NCP)

In order to define X and Γ for our purpose let V̄ := { v̄ | v ∈ V } be a copy of the set of nodes V and
let I := E′ ∪̇ V ∪̇ V̄ be the index set. We will later see that the index e ∈ E′ corresponds to x′

e, the
index v ∈ V to ℓ′

v and the index v̄ ∈ V̄ to βv, which itself corresponds bijectively to cv. With

ν−
min := min

e∈E′
ν−

e , ν−
max := max

e∈E′
ν−

e and b+
min = min

e∈E′
b+

e

we define

M := max
{

1,
R

ν−
min

,
1

bmin
,

ν−
max · |E′|
R · b+

min

}
, (6.7)

X :=

 (x′, ℓ′, β) ∈ RI

∣∣∣∣∣∣∣
0 ≤ x′

e ≤ 4M2 · ν−
e for all e ∈ E′

0 ≤ ℓ′
v ≤ 3M2 for all v ∈ V

0 ≤ βv ≤ log(2M · R) for all v̄ ∈ V̄

 ,

Γi(x′, ℓ′, β) :=



x′
e

e−βv · ν−
e

− ℓ′
v if i = e = uv ∈ E∗,

max
{

ℓ′
u,

x′
e

e−βv · ν−
e

}
− ℓ′

v if i = e = uv ∈ E′\E∗,∑
e∈δ−

v

x′
e −

∑
e∈δ+

v

x′
e if i = v ∈ V \ { s, t } ,

∑
e∈δ−

t

x′
e −

∑
e∈δ+

t

x′
e − 1 if i = t ∈ V,

ℓ′
s − 1

e−βs · R
if i = s ∈ V,

ℓ′
v − max

e∈δ+
v

x′
e

b+
e

if i = v̄ ∈ V̄ .

Note that the e in e−βs stands for the Euler constant. Even though e is still also used for arcs, it
should be very clear from the context whether e denotes the Euler constant.
Since X is convex and compact and Γ is continuous Theorem 2.6 states that there exists a solu-
tion (x′, ℓ′, β) ∈ SOL(X, Γ).
In order to show that this solution corresponds to a spillback thin flow we need the nonlinear
complementarity property. Therefore, we first show that the components of (x′, ℓ′, β) do not hit the
upper boundaries of the box X.

Lemma 6.9. For every solution (x′, ℓ′, β) ∈ SOL(X, Γ) we have

(i) x′
e < 4M2 · ν−

e for every arc e ,

(ii) ℓ′
v < 3M2 for every node v ∈ V ,

(iii) βv < log(2M · R) for every node v ∈ V \ { s } with
∑

e∈δ+
v

x′
e > 0.
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The proof basically works the following way. We first assume that one component hits the upper
boundary, then we define a point in X that equals the solution but only differs in that one component.
Together with (VI) we can turn this into a contradiction. For (ii) we use the already proven (NCP)
properties for x′

e and the basic observation (2.1) of a static b-transshipment (see page 13). Finally,
(iii) is shown by applying (NCP) to x′

e and using flow conservation of (x′
e)e∈E′ , which is induced by

(NCP) applied to ℓ′
v for all v ∈ V . For the sake of clarity we moved the proof to the appendix on page

119.
With this lemma we can finally show the following existence result.

Theorem 6.10.
Consider an acyclic network G′ = (V, E′) with source s and sink t, outflow capacities (ν−

e )e∈E′ ,
inflow bounds (b+

e )e∈E′ as well as a set of resetting arcs E∗ ⊆ E′. Suppose that every node v is
reachable by s. Then there exists a spillback thin flow (x′, ℓ′, c) with resetting on E∗.

To prove this we consider a solution (x′, ℓ′, β) ∈ SOL(X, Γ) and set cv := e−βv . With the help of
Lemma 6.9 we can use the (NCP) properties to show the spillback thin flow equations. Note that
the nodes with zero throughput of x′ need a special treatment. For those nodes we basically set
cv := 1 and ℓv := mine=uv∈E′ ρe(ℓ′

u, x′
e, cv). The details of this proof can be found in the appendix on

page 120.

6.6 Constructing Nash Flows Over Time
In the same way as in the base model we want to use spillback thin flows in order to construct a
Nash flow over time in the kinematic wave model. In contrast to the base model we will have four
different kinds of events that can end a phase. In the following we only consider Nash flows over
time f that have right-continuous and piece-wise constant in- and outflow rates.

α-Extensions. For a fixed ϕ ∈ R≥0 we consider once more a restricted Nash flow over time only
taking into account the particles in [0, ϕ). This is enough to determine the earliest arrival times ℓv(ϕ)
for each v ∈ V and the inflow bounds b+

e (ℓu(ϕ)) for all e = uv ∈ E as well as E′
ϕ, E∗

ϕ and Ēϕ.
Hence, Theorem 6.10 provides a spillback thin flow (x′, ℓ′, c) on the current shortest paths network
G′

ϕ = (V, E′
ϕ) with resetting on E∗

ϕ and inflow bounds (b+
e (ℓu(ϕ)) for all e = uv ∈ E′. We use this

spillback thin flow to extend the restricted Nash flow over time in the following way. We set

ℓv(ϕ + ξ) := ℓv(ϕ) + ξ · ℓ′
v and xe(ϕ) := xe(ϕ) + ξ · x′

e for ξ ∈ [0, α),

as well as

f+
e (θ) := x′

e

ℓ′
u

for θ ∈ [ℓu(ϕ), ℓu(ϕ + α)) and f−
e (θ) = x′

e

ℓ′
v

for θ ∈ [ℓv(ϕ), ℓv(ϕ + α]).

Additionally, we define

r(θ) := cv · R for all θ ∈ [ℓs(ϕ), ℓs(ϕ + α)).

As before this extended flow over time is called α-extension.

Thin flow phase. In the following we present some necessary bounds on α, which we later show to
be sufficient for the α-extension to form a restricted Nash flow over time on [0, ϕ + α).
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As in the base model, queues can only shrink until they deplete and non active arcs can become
active and open alternative routes. Thus, we get the following two conditions on α for all e = uv:

ℓv(ϕ) − ℓu(ϕ) + α(ℓ′
v − ℓ′

u) ≥ τe if e ∈ E∗
ϕ (6.8)

ℓv(ϕ) − ℓu(ϕ) + α(ℓ′
v − ℓ′

u) ≤ τe if e ∈ E\E′
ϕ. (6.9)

In addition, the inflow bounds of the spillback arcs need to be constant within one phase, i.e., for all
e = uv ∈ Ēϕ we require that

b+
e (ℓu(ϕ) + ξ · ℓ′

u) = b+
e (ℓu(ϕ)) for all ξ ∈ [0, α). (6.10)

Finally, the spillback thin flow changes whenever an arc becomes full. Thus, within an extension
phase, the total amount of flow on an arc e = uv ∈ E′

ϕ\Ēϕ stays strictly under the storage capacity:

de(ℓu(ϕ + ξ)) < σe for ξ ∈ [0, α). (6.11)

Note that F −
e needs not be linear on [ℓu(ϕ), ℓu(ϕ + α)). We call α > 0 feasible if it satisfies Equa-

tions (6.8) to (6.11) and the following lemma shows that such an α always exists.

Lemma 6.11. For a given restricted Nash flow over time on [0, ϕ) in the kinematic wave model there
exists a feasible α > 0.

Proof. By Lemma 6.6 (ii) and (iii) we have that ℓv(ϕ)−ℓu(ϕ) > τe for e = uv ∈ E∗
ϕ and ℓv(ϕ)−ℓu(ϕ) <

τe for e = uv ∈ E\E′
ϕ. Since de(ℓu(ϕ)) < σe for e = uv ∈ E′

ϕ\Ēϕ we can find an α1 > 0 that satisfies
Equations (6.8), (6.9) and (6.11). Lemma 6.6 (v) states that ℓu(ϕ) < ℓv(ϕ) for full arcs and since
f−

e is piecewise-constant and right-continuous on [ℓu(ϕ), ℓv(ϕ)) so is b+
e . Hence, there is an α2 > 0

satisfying (6.10). Clearly, α := min { α1, α2 } > 0 is feasible.

For the maximal feasible α we call the interval [ϕ, ϕ + α) thin flow phase.
These four conditions on α are indeed sufficient, which is shown in the next theorem.

Theorem 6.12.
Consider a restricted Nash flow over time on [0, ϕ) and a feasible α > 0, then the α-extension is a
restricted Nash flow over time on [0, ϕ + α). Furthermore, the extended ℓ- and x-functions represent
the earliest arrival times and the underlying static flows for all φ ∈ [0, ϕ + α).

To prove this we first show that the α-extension is a feasible flow over time, where the fair allocation
condition follows from (sTF2) and (sTF3), the inflow condition from (sTF4), and the no-slack
condition from (sTF5). Furthermore, the no-deadlock condition follows since the total transit time
of each cycle is positive. To show that the extended ℓ-labels correspond to the earliest arrival times
we do a quite technical case distinction. With this the Nash flow condition follows immediately. The
formal proof can be found in the appendix on page 121.
The next theorem finally shows the existence of Nash flows over time in the kinematic wave model.

Theorem 6.13.
There exists a Nash flow over time in the kinematic wave model.

Proof. The empty flow over time is a restricted Nash flow over time for the empty set [0, 0). For a
given restricted Nash flow over time fi on [0, ϕi) we choose a maximal feasible αi ∈ (0, ∞], which
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exists due to Lemma 6.11, and extend fi with Theorem 6.12 to a restricted Nash flow over time fi+1

on [0, ϕi+1), where ϕi+1 = ϕi + αi. This leads to a strictly increasing sequence (ϕi)i∈N. Suppose this
sequence has a finite limit ϕ∞ := limi→∞ ϕi < ∞. In this case we define a restricted Nash flow over
time f∞ for [0, ϕ∞) by using the point-wise limits of the x- and ℓ-functions. Note that the functions
remain monotonically increasing and bounded (see Theorem 6.5), and therefore, the process can
be continued from this limit point. Since this enables us to always extend the Nash flow over time,
there cannot be an upper bound on the length of the extension interval because the smallest upper
bound would correspond to a limit point, which we can extend again.

Example. We consider a Nash flow over time in the kinematic wave model depicted in Figure 6.4
on the next page. The first particles [0, 24) take the direct path (s, v, t) and thereby build up queues
on vt and on sv as the inflow capacity of vt restricts the outflow of sv to 2. For particle 24, which
arrives at v at time 14, the waiting time on vt becomes so long that path (v, w, t) becomes active. As
the flow leaving v within this second phase is no longer restricted, the outflow rate of sv increases
to 4, causing the queue to decrease. For particle 30 the arc sv becomes full (which happens at time
10), and therefore, we have spillback at the source, which throttles the network inflow rate to 2,
as the gap flow arrives at s with a rate of 2 during time [10, 17). For particle 44 two events happen
simultaneously: The gap flow of rate 4 finally reaches s at time 17, which means that the network
inflow rate can again operate at rate 3, and the queue of arc sv depletes at time 19. After this the
Nash flow over time reaches its steady state.

6.7 Further Results
Except for the results presented so far, Nash flows over time in the spillback or kinematic wave model
have not been studied much yet. But some results concerning uniqueness and the price of anarchy
follow rather easily.

6.7.1 Non-Uniqueness of Earliest Arrival Times
It turns out that the ℓ′-labels in spillback thin flows, and hence the earliest arrival times of a Nash
flow over time, are not uniquely determined anymore. As seen in Figure 6.5 on page 114 it can
happen in the spillback model (even without kinematic waves) that an arc becomes full at the very
same time as a new path becomes active. In the displayed graph the x′

vt value can be equal to all
values in [ 1

2 , 2], which causes the ℓ′
v-label to lie between [ 1

2 , 2] as well. This also makes sense from a
traffic perspective as all traffic users arriving at the highway-exit v know that both routes to their
destination are of equal length. As long as the congestion on arc vt does not decrease, they can
freely choose between the two paths. Even the extreme case that everyone sticks to the congested
highway vt and nobody takes the ring road (v, w, t) would be an equilibrium, as this only increases
the congestion on arc sv, which every road user experiences independent of the route choice.
This phenomenon does not only show that there is a continuum of valid spillback thin flows, it also
shows that a Nash flow over time can be very chaotic as the spillback thin flow can basically change
at every point in time after arc vt became full (as long as the particles with the same spillback thin
flow form a measurable set). It also indicates that there are dynamic equilibria with different arrival
times, and therefore, one might consider the worst or the best Nash flow over time.
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Figure 6.4: An example of a Nash flow over time in the kinematic wave model in the network displayed on
the top. Here, sv has a transit time τsv = 2, a gap transit time of ηsv = 3, an outflow capacity
of ν−

sv = 4 and a storage capacity of σsv = 20. The storage capacities of all other arcs are ∞,
and hence, the respective gap transit times are irrelevant. All other arc properties are displayed
accordingly and the network inflow rate is 3. The Nash flow over time consists of four thin flow
phases depicted in the middle. At the bottom we show six snapshots in time of the resulting flow
over time.
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6.7.2 Unbounded Prices of Anarchy
By the network in Figure 6.6 we can observe that the time price of anarchy is unbounded in the
spillback model, and therefore also in the kinematic wave model. By setting the inflow capacity ν+

vt

to a small ε > 0 the Nash flow over time will be unique, as the top path (v, w, t) will never become
active. Hence, in a Nash flow over time, the flow will arrive at sink t with a rate of ε, whereas the
optimal earliest arrival flow will additionally use the top route. Thus, for a given flow amount A the
Nash flow over time needs more than A

ε time units until the last particle arrives, whereas an optimal
flow over time will be done before time A + 3. Thus, the time price of anarchy is unbounded for this
network family.
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Figure 6.5: This example shows that spillback thin flows are not unique. The network is shown on the top.
Here, arc vt has a transit time of τvt = 2, an inflow capacity of ν+

vt = 2, a storage capacity of
σvt = 8 and an outflow capacity of ν−

vt = 1. The kinematic waves are disabled, i.e., all gap transit
times are 0. The Nash flow over time, displayed below, consists of two phases. The second phase is
not unique, and thus, two possibilities, A and B, are depicted. On the left we show the spillback thin
flows and on the right some key snapshots in time of the resulting flow over time. At the beginning
(top row) all flow has to take the shortest path (s, v, t) as arc wt is inactive. A queue is growing at
the end of arc vt. For particle 12 two events happen at the same time. The arc wt becomes active
and, at the moment particle 12 reaches v at time θ = 7, arc vt gets full. Now, there are multiple
possibilities for the next spillback thin flow. Either the flow splits up and half of the particles take
the top route while the other half continues to use the full arc (Scenario A). In this case we have
cv = 1 and no queue on arc sv. Or all particles stay on the bottom route (Scenario B) in which case
we have cv = 1

2 and due to spillback a queue is growing on arc sv. All convex combinations of
these two spillback thin flows are also valid.
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6.8 Appendix: Technical Proofs
Lemma 6.2. For a feasible flow over time f the following statements hold for all θ ∈ [0, ∞):

(i) If e is full at time θ we have ze(θ) > 0.

(ii) If e is full at time θ we have ze(θ − ηe) > 0.

(iii) Every arc that is full at time θ with f+
e (θ) = b+

e (θ) is part of a (finite) congestion suffix.

(iv) There is a function ε : [0, ∞) → (0, 1) depending only on the network but not on f such that every
arc e with ze(θ) > 0 satisfies f−

e (θ) ≥ ε(θ) and b+
e (θ) ≥ ε(θ).

Proof.

(i) The inflow condition yields f+
e (θ) ≤ ν+

e and by definition we have ge(θ) ≤ ν−
e . Hence,

ze(θ) = F +
e (θ − τe) − F −

e (θ) ≥ F +
e (θ) − ν+

e · τe − F −
e (θ) + Ge(θ) − ν−

e · ηe

(6.1)
> de(θ) − σe ≥ 0.

(ii) Again with f+
e (θ) ≤ ν+

e and the definitions of ze, Ge and de we obtain

ze(θ−ηe) = F +
e (θ−ηe−τe)−F −

e (θ−ηe) ≥ F +
e (θ)−ν+

e ·(τe+ηe)−F −
e (θ)+Ge(θ)

(6.1)
> de(θ)−σe ≥ 0.

(iii) If e is not throttled at time θ − ηe we are done, since the one-elemental sequence (e) is a
congestion suffix. Thus, suppose e is throttled at time θ2 = θ − ηe. Then, by the no-slack
condition, there has to be a consecutive arc e2 with f+

e2
(θ2) = b+

e2
(θ2). If e2 is full at time θ2 and

was throttled at time θ3 := θ2 − ηe2 we find an arc e3 with f+
e3

(θ3) = b+
e3

(θ3). We repeat this
argumentation until we obtain an arc ek that has f+

ek
(θk) = b+

ek
(θk) but is not full at time θk or

not throttled at time θk − ηek
. To show that such an arc ek exists, assume for contradiction that

the constructed sequence (e1, e2, e3, . . . ) is unending. Since E is finite, there has to be some
node v that is visited infinitely often. But due to the no-deadlock condition each time we visit
v we consider a point in time which is strictly earlier (by at least min { ηe > 0 | e ∈ E }) than
the last visit of v. Since no arc is full at time 0 this is a contradiction.

(iv) We set

νmin := min
(
{ ν+

e , ν−
e | e ∈ E } ∪ { 1 }

)
, Σ := max

{∑
e∈E

ν−
e , 1

}
,

ηmin := min ({ ηe > 0 | e ∈ E } ∪ { 1 }) and ε(θ) :=
(νmin

Σ

)|E|· θ
ηmin · νmin.

If e is not throttled at time θ we have f−
e (θ) = ν−

e . Thus, suppose e is throttled. By the no-slack
condition there has to be a consecutive arc e1 with f+

e1
(θ) = b+

e1
(θ). Due to (iii) there has

to be a congestion suffix (e1, e2, . . . , ek) at time θ1 = θ where k ≤ θ
ηmin

· |E|. If ek is not full
we have f+

ek
(θk) = b+

ek
(θk) = ν+

ek
. If ek is full but not throttled at time θk+1 := θk − ηek

we
obtain by (ii) that ek had a queue at time θk+1, and therefore gek

(θk) = ν−
ek

, which leads
to f+

ek
(θk) = b+

ek
(θk) = min { ν+

ek
, ν−

ek
}. Furthermore, for two consecutive arcs ei = uv and

ei+1 = vw we have that

f−
ei

(θi+1) = cv(θi+1) · ν−
ei

≥
∑

e′∈δ+(v) f+
e′ (θi+1)∑

e′∈δ−(v) ν−
e′

· νmin ≥
f+

ei+1
(θi+1)
Σ · νmin. (6.12)
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Since the arc ei, for i = 1, . . . , k−1, is full at time θi with exhausted inflow capacity it holds that
f+

ei
(θi) = b+

ei
(θi) = min { f−

ei
(θi+1), ν−

ei
}. Recursive application of (6.12) along the sequence

gives

f−
e (θ) ≥

(νmin

Σ

)k

· νmin ≥ ε(θ).

With (ii) we obtain that b+
e (θ) = min { f−

e (θ − ηe), ν+
e } ≥ ε(θ − ηe) ≥ ε(θ) in the case that e is

full.

Lemma 6.3. For a feasible flow over time f it holds for all e ∈ E, v ∈ V and θ ∈ [0, ∞) that:

(i) qe(θ) > 0 ⇔ ze(θ + τe) > 0.

(ii) ze(θ + τe + ξ) > 0 for all ξ ∈ [0, qe(θ)).

(iii) F +
e (θ) = F −

e (Te(θ)) whenever Te(θ) < ∞.

(iv) For θ1 < θ2 with F +
e (θ2) − F +

e (θ1) = 0 and ze(θ2 + τe) > 0 we have Te(θ1) = Te(θ2).

(v) If Te(θ) < ∞ and f−
e (Te(θ)) = 0 then F +

e (θ + qe(θ)) − F +
e (θ) = 0.

(vi) If Te(θ) < ∞ the push rate functions satisfy

b−
e (Te(θ)) =

ν−
e if F +

e (θ + qe(θ)) − F +
e (θ) > 0,

min { f+
e (Te(θ) − τe), ν−

e } else.

(vii) The functions Te are monotonically increasing.

(viii) The functions Te and qe are differentiable at almost all θ with qe(θ) < ∞.

(ix) For almost all θ ∈ [0, ∞) with qe(θ) < ∞ we have

q′
e(θ) =


f+

e (θ)
f−

e (Te(θ)) − 1 if f−
e (Te(θ)) > 0,

−1 else if ze(θ + τe) > 0,

0 else.

Proof.

(i) This follows directly by the definition of qe.

(ii) For qe(θ) < ∞ we have by definition that qe(θ) is the minimal value such that

F −
e (θ + τe + qe(θ)) − F −

e (θ + τe) = ze(θ + τe) = F +
e (θ) − F −

e (θ + τe) (6.13)

and for qe(θ) = ∞ we have for all q ∈ [0, ∞) that

F −
e (θ + τe + q) − F −

e (θ + τe) < ze(θ + τe) = F +
e (θ) − F −

e (θ + τe).

In both cases we obtain F +
e (θ)−F −

e (θ+τe +ξ) > 0 for ξ ∈ [0, qe(θ)). Since F +
e is monotonically

increasing we have for all ξ ∈ [0, qe(θ)) that

ze(θ + τe + ξ) = F +
e (θ + ξ) − F −

e (θ + τe + ξ) ≥ F +
e (θ) − F −

e (θ + τe + ξ) > 0.
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(iii) Whenever Te(θ) < ∞ we have qe(θ) < ∞, and therefore, (6.13) implies that F −
e (Te(θ)) =

F +
e (θ) in this case.

(iv) We have

qe(θ1) = min
{

q ≥ 0

∣∣∣∣∣
∫ θ2+τe

θ1+τe

f−
e (ξ) dξ +

∫ θ1+τe+q

θ2+τe

f−
e (ξ) dξ = F +

e (θ1) − F −
e (θ1 + τe)

}

= min
{

p = q − θ2 + θ1 ≥ 0

∣∣∣∣∣
∫ θ2+τe+p

θ2+τe

f−
e (ξ) dξ = F +

e (θ2) − F −
e (θ2 + τe)

}
+ θ2 − θ1

= qe(θ2) + θ2 − θ1.

Thus, Te(θ1) = θ1 +τe +qe(θ1) = θ2 +τe +qe(θ2) = Te(θ2). Note that qe(θ1) = ∞ if, and only if,
the set above is empty, which is exactly the case when qe(θ2) = ∞. Hence, Te(θ1) = ∞ = Te(θ2)
in this case.

(v) In order to show the contra-position assume that F +
e (θ + qe(θ)) − F +

e (θ) > 0. We obtain

ze(Te(θ)) = F +
e (θ + qe(θ)) − F −

e (Te(θ)) (iii)= F +
e (θ + qe(θ)) − F +

e (θ) > 0.

Thus, Lemma 6.2 (iv) implies f−
e (Te(θ)) > ε(θ) > 0.

(vi) This follows by ze(Te(θ)) (iii)= F +
e (θ + qe(θ)) − F +

e (θ) and the definition of b−
e (θ).

(vii) Consider two points in time θ1 < θ2. We show that Te(θ1) ≤ Te(θ2).

If Te(θ1) = ∞ we have qe(θ1) = ∞, which means∫ ∞

θ1+τe

f−
e (ξ) dξ < ze(θ1 + τe) = F +

e (θ1) − F −
e (θ1 + τe).

Hence, it holds that∫ ∞

θ2+τe

f−
e (ξ) dξ =

∫ ∞

θ1+τe

f−
e (ξ) dξ −

∫ θ2+τe

θ1+τe

f−
e (ξ) dξ < F +

e (θ1) − F −
e (θ2 + τe) ≤ ze(θ2 + τe)

implying qe(θ2) = ∞, and therefore, Te(θ2) = ∞.

Now suppose that Te(θ1) < ∞. If Te(θ2) = ∞ we already have Te(θ1) ≤ Te(θ2), thus, we
consider the case that Te(θ2) < ∞. Since F +

e is monotonically increasing, (iii) implies that

F −
e (Te(θ2)) = F +

e (θ2) ≥ F +
e (θ1) = F −

e (Te(θ1)). (6.14)

If this holds with strict inequality, we obtain by monotonicity of F −
e that Te(θ1) < Te(θ2). If

(6.14) holds with equality we have two cases. If ze(θ2 +τe) > 0, (iv) states that Te(θ1) = Te(θ2).
If ze(θ2 + τe) = 0 the statement in (ii) applied to θ1 yields ξ := θ2 − θ1 ̸∈ [0, qe(θ1)). Thus,

Te(θ2) (i)= θ2 + τe ≥ θ1 + τe + qe(θ1) = Te(θ1).

(viii) Note that Te(θ) < ∞ if, and only if, qe(θ) < ∞. By (vii) Te is monotonically increasing on the set
{ θ ∈ [0, ∞) | Te(θ) < ∞ }, and hence, Lebesgue’s theorem for the differentiability of monotone
functions (Theorem 2.5 on page 19) states that Te is differentiable at almost all points in time
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in this set. As a sum of almost everywhere differentiable functions qe(θ) = Te(θ) − τe − θ is
also almost everywhere differentiable on this set.

(ix) By (iii) we have F −
e (θ + τe + qe(θ)) = F +

e (θ). Since the functions F −
e , F +

e and qe are almost
everywhere differentiable we can take the derivative on both sides to obtain with the chain
rule that

f−
e (Te(θ)) · (1 + q′

e(θ)) = f+
e (θ).

Hence, q′
e(θ) = f+

e (θ)
f−

e (Te(θ)) − 1 if f−
e (Te(θ)) > 0. In the case of f−

e (Te(θ)) = 0 and ze(θ + τe) > 0
(v) yields F +

e (θ + ξ) − F +
e (θ) = 0 for all ξ ∈ [0, qe(θ)) ̸= ∅, and therefore Te(θ) = Te(θ + ξ) by

(i) and (iv). It follows that

qe(θ + ξ) = Te(θ + ξ) − θ − ξ − τe = Te(θ) − θ − τe − ξ = qe(θ) − ξ.

Thus, the right derivative of qe at θ equals −1, which implies that either q is not differentiable
at θ or q′

e(θ) = −1.

Finally, in the case of f−
e (Te(θ)) = 0 and ze(θ + τe) = 0 we have qe(θ) = 0 by (i), and thus, θ is

a local minimum of qe. Hence, qe is either not differentiable at θ or q′
e(θ) = 0.

Lemma 6.6. Given a Nash flow over time the following holds for all times θ:

(i) E∗
ϕ ⊆ E′

ϕ.

(ii) E′
ϕ = { e = uv | ℓv(ϕ) ≥ ℓu(ϕ) + τe }.

(iii) E∗
ϕ = { e = uv | ℓv(ϕ) > ℓu(ϕ) + τe }.

(iv) Ēϕ ⊆ E′
ϕ.

(v) ℓu(ϕ) < ℓv(ϕ) for all e = uv ∈ Ēϕ.

Proof. (i) to (iii) follow from the statements made in Lemma 3.4 of the base model. The proof of
this lemma can be found on page 49. The last two statements are shown in the following.

(iv) For e ∈ Ēϕ Lemma 6.2 (ii) states that ze(ℓu(ϕ) − ηe) > 0. Therefore, by continuity of ze

and Lemma 6.2 (iv) we have that f−
e (ξ) > 0 for all ξ ∈ [ℓu(ϕ) − ηe − δ, ℓu(ϕ) − ηe] for some

small δ > 0. Considering the amount of flow that has left the arc and whose gap flow has also
already left the arc, we obtain for all ε > 0 that

F −
e (ℓu(ϕ)) − Ge(ℓu(ϕ)) =

∫ ℓu(ϕ)−ηe

0
f−

e (ξ) dξ

>

∫ ℓu(ϕ)−ηe−ε

0
f−

e (ξ) dξ

= F −
e (ℓu(ϕ) − ε) − Ge(ℓu(ϕ) − ε).

This, together with de(ℓu(ϕ)) = σe ≥ de(ℓu(ϕ) − ε), yields

F +
e (ℓu(ϕ)) = de(ℓu(ϕ)) + F −

e (ℓu(ϕ)) − Ge(ℓu(ϕ))

> de(ℓu(ϕ) − ε) + F −
e (ℓu(ϕ) − ε) − Ge(ℓu(ϕ) − ε)

= F +
e (ℓu(ϕ) − ε).

Hence, Lemma 3.3 (v) implies e ∈ E′
ϕ.
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(v) Due to (iv), e is active, i.e., ℓu(ϕ) + τe + qe(ℓu(ϕ)) = ℓv(ϕ). Thus, for τe > 0 the claim follows
immediately. For τe = 0 we get by Lemma 6.2 (i) that 0 < ze(ℓu(ϕ)) = ze(ℓu(ϕ) + τe). Hence,
Lemma 6.3 (i) implies qe(ℓu(ϕ)) > 0, and therefore ℓu(ϕ) < ℓv(ϕ).

Lemma 6.9. For every solution (x′, ℓ′, β) ∈ SOL(X, Γ) we have

(i) x′
e < 4M2 · ν−

e for every arc e ,

(ii) ℓ′
v < 3M2 for every node v ∈ V ,

(iii) βv < log(2M · R) for every node v ∈ V \ { s } with
∑

e∈δ+
v

x′
e > 0.

Proof.

(i) Suppose there is an arc e ∈ E′ with x′
e = 4M2 · ν−

e . Note that e−βv ≤ 1 and ℓ′
v ≤ 3M2, and

therefore, Γe(x′, ℓ′, β) = x′
e

e−βv ·ν−
e

− ℓ′
v even if e ∈ E′\E∗. Hence, for (y, ℓ′, β) ∈ X with ye := 0

and yi := x′
i for i ∈ E′\ { e }, (VI) states that

0 ≤ −x′
e ·
(

x′
e

e−βv · ν−
e

− ℓ′
v

)
≤ 4M2 · ν−

e · (ℓ′
v − 4M2).

But this is a contradiction since ℓ′
v − 4M2 < 0.

(ii) Using (x′, k, β) with kv = ℓ′
v for v ̸= s we obtain with (VI) that (ks − ℓ′

s) · (ℓ′
s − 1

e−βs ·R ) ≥ 0 for
all ks ∈ [0, 3M2]. Hence, ℓ′

s = 1
e−βs ·R ≤ 2M < 3M2.

Furthermore, we will show that∑
e∈δ−

v

x′
e ≤

∑
e∈δ+

v

x′
e for all v ∈ V \ { s, t } .

If ℓ′
v > 0 this follows from (VI) for (x′, k, β) ∈ X with ku = ℓ′

u for all nodes u ∈ V \ { v } and
kv = 0. In the case of ℓ′

v = 0 the inequality follows since (i) and (NCP) imply that x′
e = 0 on

all arcs e ∈ δ−
v .

If we define
b(v) :=

∑
e∈δ+

v

x′
e −

∑
e∈δ−

v

x′
e for all v ∈ V,

the flow x′
e is a feasible static b-transshipment, where b(v) ≥ 0 for all v ∈ V \ { t }. Note that s

has no incoming arcs, and thus, b(s) =
∑

e∈δ+
s

x′
e ≥ 0. Since the graph G′ is acyclic and t is the

only sink in this b-transshipment, we get that
∑

e∈δ+
t

x′
e = 0, and therefore, the definition of Γt

and (VI) imply b(t) ≥ −1. In the following we show that a label of 3M2 would induce a flow
of x′

e > 1 on an arc, which is a contradiction to Equation (2.1) on page 13. Suppose there is
a node w with ℓ′

w = 3M2. Since ℓ′
s < 3M2, there has to be an arc e = uv along an s-w-path,

such that ℓ′
u < ℓ′

v = 3M2. By (i) we can apply (NCP) on Γe to obtain

x′
e ≥ ℓ′

v · e−βv · ν−
e ≥ 3M2 · e− log(2M ·R) · ν−

min > M · 1
R

· ν−
min

(6.7)
≥ 1.

Thus, ℓ′
v < 3M2 for every v ∈ V and by (NCP) flow conservation follows.

∑
e∈δ+

v

x′
e −

∑
e∈δ−

v

x′
e =


1 if v = s

−1 if v = t

0 else.

(6.15)
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In other words, x′
e is a static s-t flow of value 1. Hence, x′

e ≤ 1 for all e ∈ E′.

(iii) Suppose βv = log(2M · R) for some v ∈ V with
∑

e∈δ+
v

x′
e > 0. For (x′, ℓ′, γ) ∈ X with γu := βu

for all u ̸= v and γv := 0 we obtain from (VI) that ℓ′
v ≤ max

e∈δ+
v

x′
e

be
. Let e1 ∈ arg max

e∈δ+
v

x′
e

be
. For v = s

we have a contradiction, since

ℓ′
s = 1

e−βs · R
= 2M

(6.7)
>

1
b+

min
≥

x′
e1

b+
e1

.

For v ̸= s Equation (6.15) implies that there is at least one incoming arc e2 = uv that carries

x′
e2

≥ x′
e1

|δ−
v | ≥ x′

e1
|E′| > 0 flow. Using (NCP) for arc e2 yields Γe2(x′, ℓ′, β) = 0, and therefore, we

obtain the following

ℓ′
v ≥

x′
e2

e−βv · ν−
e2

≥
x′

e1
· elog(2M ·R)

|E′| · ν−
e2

(6.7)
≥

x′
e1

· 2 · ν−
max · |E′| · R

|E′| · ν−
e2 · R · b+

min
>

x′
e1

b+
min

≥
x′

e1

b+
e

.

This is again a contradiction, which finishes the proof.

Theorem 6.10.
Consider an acyclic network G′ = (V, E′) with source s and sink t, outflow capacities (ν−

e )e∈E′ ,
inflow bounds (b+

e )e∈E′ as well as a set of resetting arcs E∗ ⊆ E′. Suppose that every node v is
reachable by s. Then there exists a spillback thin flow (x′, ℓ′, c) with resetting on E∗.

Proof. Let (x′, ℓ̃′, β) be a solution ofo VI(X, Γ). In order to obtain a spillback thin flow we need to
make some modifications. Let V0 ⊆ V \ { s } be the set of nodes with∑

e∈δ−
v

x′
e =

∑
e∈δ+

v

x′
e = 0.

We set cv = 1 if v ∈ V0 and cv = e−βv otherwise. Note that we have ρe(·, x′
e, e−βv ) = ρe(·, x′

e, cv)
because cv ̸= e−βv implies x′

e = 0. Furthermore, let

L :=
{

k ∈ RV
≥0

∣∣∣∣ kv = ℓ̃v for v ∈ V \V0 and kv ≤ min
e=uv∈E′

ρe(ku, x′
e, cv) for v ∈ V

}
.

Clearly, ℓ̃′ ∈ L since for every v ∈ V we obtain by (NCP) applied to e = uv that

ℓ̃′
v ≤


x′

e

e−βv ·ν−
e

if e ∈ E∗

max { ℓ̃′
u,

x′
e

e−βv ·ν−
e

} if e ∈ E′\E∗

 = ρe(ℓ̃′
u, x′

e, e−βv ) = ρe(ℓ̃′
u, x′

e, cv).

So L is non-empty and closed. From the facts that x′
e and ℓ̃′

s = 1
e−βs

≤ 2M are bounded and
that every node is reachable from s, it follows that L is also bounded, i.e., we can define ℓ′ :=
arg maxk∈L

∑
v∈V kv.

In the remaining part of the proof we show that (x′, ℓ′, c) is a spillback thin flow. Equation (6.15)
states that x′ is a static s-t-flow of value 1, so it remains to show Equations (sTF1) to (sTF5).

(sTF1) Applying (NCP) to ℓ′
s yields (ℓ′

s − 1
e−βs

) ≥ 0 and ℓ′
s · (ℓ′

s − 1
e−βs

) = 0. Thus, ℓ′
s = 1

e−βs
= 1

cs
.

(sTF3) Applying (NCP) to x′
e yields

x′
e ·
(
ρe(ℓ̃′

u, x′
e, e−βv ) − ℓ̃′

v

)
= 0.
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So if x′
e > 0 it follows that u, v ̸∈ V0, and therefore ℓ̃′

v = ℓ′
v and ℓ̃′

u = ℓ′
u, which shows

ℓ′
v = ρe(ℓ′

u, x′
e, e−βv ) = ρe(ℓ′

u, x′
e, cv).

(sTF2) The definition of L implies

ℓ′
v ≤ min

e=uv∈E′
ρe(ℓ′

u, x′
e, cv).

In order to show equality we consider two cases. If v ̸∈ V0 there exists an e ∈ δ−
v with x′

e > 0, and
hence, (sTF3) implies equality.
For v ∈ V0 suppose for contradiction that ℓ′

v < mine=uv∈E′ ρe(ℓ′
u, x′

e, cv). We set kw := ℓ′
w for

w ∈ V \ { v } and kv = mine=uv∈E′ ρe(ℓ′
u, x′

e, cv). Since ρe(·, x′
e, cw) is non-decreasing we have

kw = ℓ′
w ≤ ρe(ℓ′

u, x′
e, cw) ≤ ρe(ku, x′

e, cw)

for w ̸= v. Hence, we obtain that k ∈ L which is a contradiction to the maximality of ℓ′
v.

(sTF4) Applying (NCP) to v̄ ∈ V̄ yields ℓ̃′
v −max x′

e

b+
e

≥ 0, which proves (sTF4) for v ̸∈ V0. For v ∈ V0

we have ℓ′
v ≥ 0 = max

e=vw∈E′

x′
e

b+
e

, trivially.

(sTF5) Finally, we have βv ·
(

ℓ̃v − max
e=vw∈E′

x′
e

b+
e

)
= 0, which implies (sTF5) for v ̸∈ V0, since βv > 0

means that cv = e−βv < 1, and thus, we have equality in this case. For v ∈ V0 we set cv = 1, and
therefore there is nothing to show.
Hence, (x′, ℓ′, c) forms a spillback thin flow, which finishes the proof of Theorem 6.10.

Theorem 6.12.
Consider a restricted Nash flow over time on [0, ϕ) and a feasible α > 0, then the α-extension is a
restricted Nash flow over time on [0, ϕ + α). Furthermore, the extended ℓ- and x-functions represent
the earliest arrival times and the underlying static flows for all φ ∈ [0, ϕ + α).

Proof. Obviously f−
e and f+

e are bounded, piece-wise constant and right-continuous. All conditions
are fulfilled on [0, ϕ) since nothing has changed on this interval. Note that we use the linearly
extended ℓ-labels in the first part of the proof and that we show only in the end that they are indeed
the earliest arrival times.

Flow conservation. For ℓ′
v > 0 we obtain for all v ∈ V \ { t } and all θ ∈ [ℓv(ϕ), ℓv(ϕ + α)) that

∑
e∈δ+(v)

f+
e (θ) −

∑
e∈δ−(v)

f−
e (θ) =

∑
e∈δ+(v)

x′
e

ℓ′
v

−
∑

e∈δ−(v)

x′
e

ℓ′
v

=

0 if v ∈ V \ { s, t } ,

cs · R = r(θ) ∈ (0, R] if v = s.

Note that x′ is a static flow of value 1 and that ℓ′
s = 1

cs·R . For the degenerated case of ℓ′
v = 0 we have

[ℓv(ϕ), ℓv(ϕ + α)) = ∅, and therefore, there is nothing to show.

x is well-defined. For all ξ ∈ [0, α) we have

F +
e (ℓu(ϕ + ξ)) = xe(ϕ) +

∫ ℓu(ϕ)+ξ·ℓ′
u

ℓu(ϕ)
f+

e (θ) dθ = xe(ϕ) + ξ · x′
e = xe(ϕ + ξ) and

F −
e (ℓv(ϕ + ξ)) = xe(ϕ) +

∫ ℓv(ϕ)+ξ·ℓ′
v

ℓv(ϕ)
f−

e (θ) dθ = xe(ϕ) + ξ · x′
e = xe(ϕ + ξ).

(6.16)
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Fair allocation condition. For every arc e = uv we have to show that

f−
e (ℓv(ϕ + ξ)) = min

{
b−

e (ℓv(ϕ + ξ)), cv · ν−
e

}
for ξ ∈ [0, α).

This is obvious for ℓ′
v = 0, so we assume ℓ′

v > 0.

Case 1: x′
e = 0.

Either e is not active or it is active, but then ℓ′
v > 0 together with (sTF2) implies that e is not resetting.

Either way ze(ℓu(ϕ) + τe) = 0 and since f+
e (ℓu(ϕ + ξ)) = 0 the queue stays empty. We have

f−
e (ℓv(ϕ + ξ)) = x′

e

ℓ′
v

= 0 and b−
e (ℓv(ϕ + ξ)) = f+

e (ℓv(ϕ + ξ) − τe) = 0

for ξ ∈ [0, α) since either ℓv(ϕ + ξ) − τe ≥ ℓu(ϕ) or ℓv(ϕ + ξ) − τe < ℓu(ϕ). In the first case the
inflow is part of either the current or an even later spillback thin flow. Either way the inflow is 0. In
the second case the inflow if part of a previous spillback thin flow, thus, e is not active for ζ with
ℓu(ζ) = ℓv(ϕ + ξ) − τe, since

Te(ζ) = ℓu(ζ) + τe + qe(ζ) ≥ ℓv(ϕ + ξ) > ℓv(ζ).

We constructed the flow over time on [0, ϕ) in such a way that the Nash flow condition is fulfilled at
every point in time, and therefore, we have f+

e (ℓv(ϕ + ξ) − τe) = f+
e (ℓu(ζ)) = 0 for all ξ ∈ [0, α).

Case 2: x′
e > 0 and e ∈ E′

ϕ\E∗
ϕ with x′

e

cv·ν−
e

≤ ℓ′
u.

It follows from (sTF3) that ℓ′
v = ℓ′

u, and thus,

f+
e (ℓu(ϕ + ξ)) = x′

e

ℓ′
u

= x′
e

ℓ′
v

= f−
e (ℓv(ϕ + ξ)) for ξ ∈ [0, α).

We obtain

f+
e (ℓv(ϕ + ξ) − τe) = f+

e (ℓv(ϕ) − τe + ℓ′
v · ξ)) = f+

e (ℓu(ϕ) + ℓ′
u · ξ)) = f+

e (ℓu(ϕ + ξ)) = f−
e (ℓv(ϕ + ξ)).

This equality yields

ze(ℓv(ϕ + ξ)) = ze(ℓv(ϕ)) +
∫ ℓv(ϕ+ξ)

ℓv(ϕ)
f+

e (ζ − τe) − f−
e (ζ) dζ = 0.

By the case distinction we have

b−
e (ℓv(ϕ + ξ)) = f+

e (ℓv(ϕ + ξ) − τe) = x′
e

ℓ′
u

≤ cv · ν−
e .

In conclusion, we obtain

min
{

b−
e (ℓv(ϕ + ξ)), cv · ν−

e

}
= b−

e (ℓv(ϕ + ξ)) = f+
e (ℓv(ϕ + ξ) − τe) = f−

e (ℓv(ϕ + ξ)).

Case 3: x′
e > 0 and (e ∈ E∗

ϕ or e ∈ E′
ϕ\E∗

ϕ with x′
e

cv·ν−
e

> ℓ′
u).

It follows from (sTF3) that ℓ′
v = x′

e

cv·ν−
e

, and thus,

f−
e (ℓv(ϕ + ξ)) = x′

e

ℓ′
v

= cv · ν−
e for ξ ∈ [0, α).
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It remains to show that b−
e (ℓv(ϕ + ξ)) ≥ cv · ν−

e . For e ∈ E∗
ϕ we obtain by (6.8) that

ℓv(ϕ) − ℓu(ϕ) + ξ · (ℓ′
v − ℓ′

u) > τe for ξ ∈ [0, α).

For e ∈ E′
ϕ\E∗

ϕ and ℓ′
v = x′

e

cv·ν−
e

> ℓ′
u it follows that ℓv(ϕ) − ℓu(ϕ) = τe and ξ · (ℓ′

v − ℓ′
u) > 0 for

ξ ∈ (0, α). In both cases we get that ℓv(ϕ + ξ) − τe > ℓu(ϕ + ξ) for ξ ∈ (0, α). It follows with the
monotonicity of F +

e that

ze(ℓv(ϕ+ξ)) (6.16)= F +
e (ℓv(ϕ+ξ)−τe)−F +

e (ℓu(ϕ+ξ)) ≥ F +
e (ℓu(ϕ+ξ)+ε)−F +

e (ℓu(ϕ+ξ)) = ε· x′
e

ℓ′
u

> 0,

where we choose ε > 0, such that ℓu(ϕ + ξ) + ε < min { ℓu(ϕ + α), ℓv(ϕ + ξ) − τe }. Note that,
since a flow of x′

e leaves node u, there either has to be some inflow of x′ into u or u = s. In both
cases we have ℓ′

u > 0, and thus, ℓu(ϕ + ξ) < ℓu(ϕ + α) and x′
e

ℓ′
u

is well-defined. Finally, we get that
b−

e (ℓv(ϕ + ξ)) = ν−
e ≥ cv · ν−

e .

Inflow condition and no-slack condition. For all ξ ∈ [0, α) we show that

f+
e (ℓu(ϕ + ξ)) ≤ b+

e (ℓu(ϕ + ξ))

and that this holds with equality for at least one arc e ∈ δ+
v , whenever there is an incoming throttled

arc. Equation (6.11) ensures that an arc e ̸∈ Ēϕ stays non-full during [ℓu(ϕ), ℓu(ϕ + α)). Together
with (6.10) we get that b+

e (ℓu(ϕ + ξ)) = b+
e for all ξ ∈ [0, α), and hence, (sTF4) yields

f+
e (ℓu(ϕ + ξ)) = x′

e

ℓ′
u

≤ b+
e = b+

e (ℓu(ϕ + ξ)).

An incoming throttled arc implies cu < 1, and thus, the inequality holds with equality in this case
due to (sTF5).

No-deadlock condition. Suppose for contradiction that there is a point in time ξ, for which the set
of arcs e with ηe = 0 and de(ξ) = σe contains a cycle v1, . . . , vk = v0. For every i = 0, 1, . . . , k we
consider the particle with minimal value ϕi such that ℓvi

(ϕi) = ξ. By Lemma 6.6 (iv) we have

ℓvi(ϕi−1) − τvi−1vi ≥ ℓvi−1(ϕi−1) = ξ = ℓvi(ϕi)

for every i = 1, . . . , k, which implies ϕi−1 ≥ ϕi. Since the sum of transit times in each cycle is strictly
positive there has to be an i with τvi−1vi

> 0, and therefore ϕi−1 > ϕi, which leads to a contradiction.

Earliest arrival times. We show that the extended ℓ-labels fulfill Equations (6.3) and (6.4), and
therefore describe the earliest arrival times.
We have ℓ′

s = 1
cs·R , implying

∫ ℓs(ϕ+ξ)

0
r(ζ) dζ = ϕ +

∫ ℓs(ϕ+ξ)

ℓs(ϕ)
cs · R dζ = ϕ + (ℓs(ϕ + ξ) − ℓs(ϕ)) · 1

ℓ′
s

= ϕ + ξ

for all ξ ∈ [0, α). Since r(ζ) is always strictly positive, ℓs(ϕ + ξ) is also the minimal value that satisfies
this equation, and hence, fulfills (6.3).
Considering v ̸= s, e = uv ∈ E, and ξ ∈ [0, α), we distinguish two cases and show that ℓv(ϕ + ξ) ≤
Te(ℓu(ϕ + ξ)) in the first case and that ℓv(ϕ + ξ) = Te(ℓu(ϕ + ξ)) in the second case.
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Case 1: e ∈ E\E′
ϕ or (e ∈ E′

ϕ\E∗
ϕ with ℓ′

v < ℓ′
u).

Here, we have for all ξ ∈ [0, α) that

ℓv(ϕ + ξ) ≤ ℓu(ϕ) + τe + ξ · ℓ′
u ≤ Te(ℓu(ϕ) + ξ · ℓ′

u) = Te(ℓu(ϕ + ξ)),

where the first inequality follows either by (6.9) for e ∈ E\E′
ϕ or by ℓv(ϕ) = ℓu(ϕ) + τe and ℓ′

v < ℓ′
u

otherwise.

Case 2: e ∈ E∗
ϕ or (e ∈ E′

ϕ\E∗
ϕ with ℓ′

v ≥ ℓ′
u).

If x′
e = 0 and e ∈ E∗

ϕ we get from (sTF2) that ℓ′
v = ρe(ℓ′

u, x′
e, cv) = 0. Since e is active for ϕ we have

ℓv(ϕ + ξ) = ℓv(ϕ) = Te(ℓu(ϕ)) ≤ Te(ℓu(ϕ + ξ)).

To show equality note that with (6.8) we obtain

qe(ℓu(ϕ + ξ)) = Te(ℓu(ϕ + ξ)) − ℓu(ϕ + ξ) − τe > Te(ℓu(ϕ + ξ)) − ℓv(ϕ + ξ) ≥ 0.

Thus, Lemma 6.3 (i) and (v) together with F +
e (ℓu(ϕ + ξ)) − F +

e (ℓu(ϕ)) = ξ · x′
e = 0 implies

Te(ℓu(ϕ)) = Te(ℓu(ϕ + ξ)).
If we have x′

e = 0 and e ∈ E′
ϕ\E∗

ϕ with ℓ′
v ≥ ℓ′

u we obtain that ℓ′
v ≤ ρe(ℓ′

u, x′
e, cv) = ℓ′

u ≤ ℓ′
v, and

hence ℓ′
v = ℓ′

u. This yields

ℓv(ϕ + ξ) = ℓu(ϕ) + τe + ξ · ℓ′
u = ℓu(ϕ + ξ) + τe = Te(ℓu(ϕ + ξ)).

The last equation holds since the inflow is 0 within (ℓu(ϕ), ℓu(ϕ + ξ)), and hence, there is no queue.
Now, suppose that x′

e > 0, which implies ℓ′
v = ρe(ℓ′

u, x′
e, cv) > 0. For all ξ ∈ [0, α) we have

ℓu(ϕ + ξ) + τe = ℓu(ϕ) + τe + ξ · ℓ′
u ≤ ℓv(ϕ) + ξ · ℓ′

v = ℓv(ϕ + ξ). (6.17)

The inequality follows either by (6.8) in the case of e ∈ E∗
ϕ or, in the other case, by ℓv(ϕ) = ℓu(ϕ)+τe

and ℓ′
u ≤ ℓ′

v. By definition of qe and ze we obtain that qe(ℓu(ϕ + ξ)) is the minimal non-negative
value with

F −
e (ℓu(ϕ + ξ) + τe + qe(ℓu(ϕ + ξ))) = F +

e (ℓu(ϕ + ξ)) (6.16)= F −
e (ℓv(ϕ + ξ)).

Note that F −
e is monotone and strictly increasing at ℓv(ϕ + ξ) with slope f−

e (ℓv(ϕ + ξ)) = x′
e

ℓ′
v

> 0.
This and (6.17) imply that qe(ℓu(ϕ + ξ)) satisfies

Te(ℓu(ϕ + ξ)) = ℓu(ϕ + ξ) + τe + qe(ℓu(ϕ + ξ)) = ℓv(ϕ + ξ).

In conclusion, both cases together show that for all v ∈ V \ { s } and all ξ ∈ [0, α) we have

ℓv(ϕ + ξ) ≤ min
e=uv∈E

Te(ℓu(ϕ + ξ)).

In order to show equality, recall that (sTF2) yields an arc e = uv ∈ E′ with ℓ′
v = ρe(ℓ′

u, x′
e, cv). Hence,

either e ∈ E∗ or ℓ′
v ≥ ℓ′

u, meaning that e belongs to the second case where we have shown equality.

Nash flow condition. Since all conditions are fulfilled, we have a feasible flow over time. The Nash
flow condition follows immediately by Lemma 3.3 (iii) and (6.16). Note that by construction, the
condition holds for every point in time and not only for almost every point in time.
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Instantaneous Dynamic
Equilibria

7
One essential aspect of a Nash equilibrium is the assumption that each player has access to all
information of the game and sticks with his or her strategy even after the strategies of the other
players have been revealed. In other words, players assume that the other participants act completely
rational. Transferred to dynamic equilibria that means that every flow particle in a Nash flow over
time does not only have access to all information on the current state of the network but it also
predicts the future evolution perfectly, under the assumption that the flow in front uses current
shortest paths only. While this might be a typical assumption in mathematical game theory, it is far
from realistic in today’s traffic. Even though the routing data of the majority of traffic users might be
available in the near future (of course it is up to discussion if this is desirable society-wise) there will
always be a factor of uncertainty, since we cannot assume complete rationality of all traffic users.
On the one hand, one can argue that a Nash flow over time is a state of traffic that evolves after
multiple rounds. This makes sense when considering the daily commuters facing more or less
the same setting every day. They might take some highly congested routes with the smallest free
flow transit time at the beginning, but they will deviate to quicker alternatives after some days of
experience. On the other hand, Nash flows over time neither incorporate spontaneous changes of
the network, such as car accidents, nor do they allow for instantaneous route changes of the agents.
To address these issues we want to discuss a different class of flows over time, called instantaneous
dynamic equilibria, or IDE flows for short, in this chapter. Introduced by Lukas Graf and Tobias
Harks in early 2019 [36], these IDE flows are much more realistic concerning some aspects of today’s
traffic, but they also have their own drawbacks and oddities.
The main idea is the following. We consider a feasible flow over time in a multi-commodity setting
where every particle starts at some origin and heads to some destination. But instead of deciding
on complete origin-destination paths at the very beginning, particles only choose the first link in
the right direction, while having a complete route in mind. When reaching the next junction, every
particle reconsiders its choice and might adopt its path to the destination. Importantly, this decision
is only based on the current configuration of the network as particles do not anticipate the future
evolution. In other words, at every node each particle chooses a route with the shortest travel time to
the destination with respect to the waiting times at the exact moment of the decision. Obviously, this
is well motivated by real-world traffic, as we might assume that each road user follows a navigation
system that reports the delays on every road in the network in real-time and he or she decides
at every crossing to choose a path that has the shortest travel time to the destination at that very
moment. Of course this route might not be chosen wisely as the network can change drastically over
time. In fact, it is even possible that particles go back to a location they have already visited before.
An example where this occurs is given in Figure 7.1. But this is not even the worst that can happen.
By a careful construction of a network it is possible to create an IDE flow where no particle will ever
reach its destination, but instead, they cycle around the network for eternity. This special network
construction as well as the existence of IDE flows in networks with only a single destination were
shown by Graf and Harks in their first publication on this topic [36].
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In this chapter, however, we will focus on the structure and existence of IDE flows in the multi-origin
and multi-destination setting. This theory was developed in collaboration with Graf and Harks [37].
It turns out that these multi-commodity IDE flows have a lot in common with single-commodity
Nash flows over time. They can even be constructed by a sequence of thin-flow-like objects as we
will show in the following.

7.1 Flow dynamics
We consider the multi-commodity flow setting as it is introduced in Section 5.1.1 from page 70
onwards. We will briefly recall the central definitions.
In this chapter a network consists of a directed graph G = (V, E), where every arc e is equipped with
a transit time τe > 0 and a capacity νe > 0, and a finite set of commodities J , each with an origin-
destination pair (sj , tj) as well as a right-constant network inflow rate function rj : [0, ∞) → [0, ∞).
We denote the set of nodes that can reach tj by Vj and we assume that sj ∈ Vj .

Multi-commodity flows over time. As before we represent a flow over time by a family of locally inte-
grable and bounded functions f = (f+

j,e, f−
j,e)j∈J,e∈E , describing the in- and outflow rate functions of

each commodity. The cumulative in- and outflow is denoted by F +
j,e and F −

j,e. Furthermore, the total
flow rates and total cumulative flows of all commodities combined are defined for all θ ∈ [0, ∞) by

f+
e (θ) :=

∑
j∈J

f+
j,e(θ), f−

e (θ) :=
∑
j∈J

f−
j,e(θ), F +

e (θ) :=
∑
j∈J

F +
j,e(θ) and F −

e (θ) :=
∑
j∈J

F −
j,e(θ).

Flow conservation. We say that f is a multi-commodity flow over time if it satisfies the following
flow conservation conditions:

F −
j,e(θ + τe) ≤ F +

j,e(θ) for all θ ∈ [0, ∞), (7.1)

∑
e∈δ+

v

f+
j,e(θ) −

∑
e∈δ−

v

f−
j,e(θ) =

0 if v ∈ V \ { sj } ,

rj(θ) if v = sj ,
for almost all θ ∈ [0, ∞). (7.2)

Queues, waiting times and exit times. The queue sizes, waiting times and exit times are defined by

ze(θ) := F +
e (θ − τe) − F −

e (θ), qe(θ) := ze(θ + τe)
νe

and Te(θ) := θ + τe + qe(θ).

Feasibility. We call a multi-commodity flow over time f feasible if the total outflow rates satisfy

f−
e (θ) =

νe if ze(θ) > 0,

min { f+
e (θ − τe), νe } if ze(θ) = 0,

for almost all θ ∈ [0, ∞) (7.3)

and if the outflow rate of every commodity j ∈ J individually fulfills

f−
j,e(θ) =

f−
e (θ) · f+

j,e
(ϑ)

f+
e (ϑ) if f+

e (ϑ) > 0,

0 else,
for almost all θ ∈ [0, ∞). (7.4)

Here, ϑ = min { ξ ≤ θ | Te(ξ) = θ } denotes the earliest point in time a particle can enter the arc e in
order to leave the queue at time θ.
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7.2 Instantaneous Dynamic Equilibria
The most essential information for a particle in an IDE flow is not the earliest time to arrive at some
node, but the fastest way to reach the destination from its current location.

Current shortest path distances. Hence, we denote for every commodity j the current shortest
path distance from a node v ∈ Vj to tj by a function ℓj,v : [0, ∞) → [0, ∞) defined by

ℓj,v(θ) :=

0 for v = tj ,

min
e=vw∈E

τe + qe(θ) + ℓj,w(θ) else.
(7.5)

Clearly, this is well-defined as all transit times are strictly positive. Furthermore, since qe is almost
everywhere differentiable so are these ℓ-functions.
We say that an arc e = vw with w ∈ Vj is active for j ∈ J at time θ, if

ℓj,v(θ) = τe + qe(θ) + ℓj,w(θ).

The set of active arcs is denoted by E′
j,θ and we call the graph G′

j,θ := (Vj , E′
j,θ) the current shortest

paths network. Note that in contrast to the earliest arrival times for Nash flows over time, we always
consider the waiting time at θ even for arcs further ahead. Hence, when considering an active path
P from some node v to tj we have

ℓj,v(θ) =
∑
e∈P

(τe + qe(θ)).

Queuing arcs. We call the arcs that have a positive waiting time for particles entering at time θ the
queuing arcs and denote them by

E∗
θ := { e ∈ E | qe(θ) > 0 } .

Note that this set is not commodity specific. However, the arcs in E∗
θ ∩ E′

j,θ are comparable to the
resetting arcs of Nash flows over time.

IDE flows. As motivated at the beginning of this chapter, we want to consider flows over time where
every particle only uses arcs that lie on a current shortest path to the destination. In other words,
flow should only enter into active arcs. This leads to the following definition.

Definition 7.1 (Instantaneous dynamic equilibrium).
A feasible flow over time f is an instantaneous dynamic equilibrium (IDE flow for short), if
for all j ∈ J and every e ∈ E the IDE condition is satisfied for almost every point in time θ:

f+
i,e(θ) > 0 ⇒ e ∈ E′

j,θ. (IDE)

The next sections are dedicated to the proof of the existence of these multi-commodity IDE flows.
Similar to the existence proof for Nash flows over time, we will start with the empty flow over time
and extend it step by step. This time, however, we do not consider the particles in order of their
source arrival time. Instead, for a given snapshot time θ, we consider the incoming flow at all nodes
simultaneously. In other words, we consider the same point in time at all nodes at once.
Note that it is easy for one specific particle at node v at one specific point in time θ to determine a
current shortest path to the particle’s destination. The main difficulty is to distribute all particles
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leaving node v during a whole interval [θ, θ + α), because the flow needs to split up in such a way
that all outgoing arcs that are used stay active during the whole interval. Of course, this does not
only depend on the amount of flow that is sent into this very arc, but also on the change of waiting
times on all arcs on all current shortest paths to the destination. In networks where all commodities
have the same destination this can easily be done by considering the nodes one by one, starting with
the ones closest to the common destination. For multiple destinations, however, this is a bit more
involved since we need to consider all outgoing flows of all nodes simultaneously.

Throughput rates. Given a feasible flow over time f we want to formulate necessary conditions
(which are also sufficient, as we will see later) for f to be an IDE flow. For this we denote the
throughput rate of a commodity j at node v at time θ by bj,v(θ). More precisely, we define for every
j ∈ J and v ∈ V

bj,v(θ) :=


∑

e∈δ−
v

f−
j,e(θ) for v ∈ V \ { sj } ,∑

e∈δ−
v

f−
j,e(θ) + rj(θ) for v = sj .

7.3 Thin Flows for Instantaneous Dynamic Equilibria
Similar to the thin flows with resetting for Nash flows over time, we define a set of conditions on the
derivatives of the current shortest path distances (ℓ′

j,v)j∈J,v∈V and the outflow rate, which we will
denote by (x′

j,e)j∈J,e∈E (in the style of the thin flows for Nash flows over time).

Definition 7.2 (IDE thin flow).
Given a directed graph G = (V, E) and a set of commodities J with destinations tj for all j ∈ J ,
we consider non-negative throughput rates (bj,v)j∈J,v∈V and a set of arcs with queues E∗ ⊆ E

as well as a current shortest paths network G′
j = (Vj , E′

j) for every commodity j. Suppose G′
j

is acyclic and every node v with bj,v > 0 is in Vj and can reach tj within G′
j . We call the pair

of two real vectors (x′
j,e)j∈J,e∈E and (ℓ′

j,v)j∈J,v∈Vj
an IDE thin flow if the following equations

hold:∑
vw∈E

x′
j,e = bj,v for all j ∈ J and v ∈ V \ { tj } , (ideTF1)

x′
j,e = 0 for all j ∈ J and e ∈ E \ E′

j , (ideTF2)

ℓ′
j,tj

= 0 for all j ∈ J, (ideTF3)

ℓ′
j,v = min

e=vw∈E′
j

ρe

(∑
i∈J x′

i,e

)
+ ℓ′

j,w for all j ∈ J and v ∈ Vj \ { tj } , (ideTF4)

ℓ′
j,v = ρe

(∑
i∈J x′

i,e

)
+ ℓ′

j,w

for all j ∈ J and e = vw ∈ E′
j

with x′
j,e > 0,

(ideTF5)

where

ρe(x′
e) :=


x′

e

νe
− 1 if e ∈ E∗,

max
{

x′
e

νe
− 1, 0

}
if e ∈ E \ E∗.

Note that this time (x′
j,e)e∈E does not form a static flow in general, as the throughput rate bj,v(θ) at

a node v is not directly related to the throughput rate bj,w(θ) at another node w. In other words,
if we have an arc e = vw and the thin flow sends an inflow rate of x′

j,e into that arc, this flow will
arrive at w at time Te(θ) > θ, which will only be relevant for a later thin flow phase.
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Furthermore, the function ρe maps the total inflow x′
e to the change of the waiting time qe. In other

words, if the total inflow rate exceeds the capacity, a queue builds up with a rate of x′
e − νe, and

therefore, the waiting time increases with a slope of x′
e

νe
− 1. Analogously, if the total inflow rate is

less than the capacity, the waiting time decreases with a slope of x′
e

νe
− 1 if there was a queue to begin

with, or stays 0 otherwise.
With this observations it is easy to see that (ideTF4) describes the change of the current shortest
path distance of node v and commodity j. Considering an arc e = vw the travel time of the arc itself
changes with a slope given by ρe in dependency of the total inflow rate into this arc. In addition, the
change of travel time from w to tj is given by ℓ′

j,w. Hence, the slope of ℓj,v is given by the sum of
these two values.
Since we consider the current shortest paths network at time θ, all outgoing arcs vw ∈ E′

j are active
at the beginning. But only the arcs that attain the minimum in (ideTF4) stay active during the phase,
and therefore, only these can be used by an IDE flow. This intuition leads to the following theorem.

Theorem 7.3.
For almost all θ ∈ [0, ∞) the inflow rate x′ = (f+

j,e(θ))j∈J,e∈E of an IDE flow f , together with
the derivatives of the current shortest path distances (ℓ′

j,v)j∈J,v∈V , forms an IDE thin flow with
throughput rates (bj,v(θ))j∈J,v∈V , active arcs (E′

j,θ)j∈J and waiting arcs E∗
θ .

Proof. Let θ ∈ [0, ∞) be a point in time where all ℓ′
j,v are differentiable, where flow conservation

(3.2), the feasibility condition (7.3) as well as the IDE condition (IDE) hold and where d
dθ F +

j,e(θ) =
f+

j,e(θ) for all j ∈ J and all e ∈ E. This is given for almost all θ ∈ [0, ∞).
We have that each node v with bj,v(θ) > 0 is contained in Vj , and therefore, v can reach tj within
the acyclic current shortest paths network G′

j,θ. Equation (ideTF1) follows immediately by the
flow conservation condition, (ideTF2) by the IDE flow condition and (ideTF3) by the definition of
ℓj,tj

(θ) = 0.
For the remaining two equations we consider the derivatives of (7.5). By the differentiation rule for
a minimum (Lemma 2.3 on page 17) we have

ℓ′
j,v(θ) = min

e=vw∈E′
j,θ

q′
e(θ) + ℓ′

j,w(θ).

By Lemma 3.1 (vii) applied to the total inflow rate f+
e (θ) we have that

q′
e(θ) =


f+

e (θ)
νe

− 1 if qe(θ) > 0,

max
{

f+
e (θ)
νe

− 1, 0
}

else,

 = ρe

(∑
i∈J

f+
i,e(θ)

)
,

which shows (ideTF4).
Finally, for (ideTF5) suppose for contradiction that

ℓ′
j,v(θ) < ρe

(∑
i∈J

f+
i,e(θ)

)
+ ℓ′

j,w(θ) = q′
e(θ) + ℓ′

j,w(θ)

for some arc e ∈ E′
j,θ with f+

j,e(θ) > 0. But this contradicts the IDE condition for the times in (θ, θ +ε)
for some small ε > 0, since e will immediately leave the current shortest paths network but the inflow
rate is strictly positive during this interval. Hence, (ideTF5) is satisfied, which finishes the proof.

As the next step, we will show that these IDE thin flows always exist for all throughput rates bj,e and
all active and queuing arcs that satisfy the requirements.
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Theorem 7.4.
For all current shortest paths networks G′

j = (Vj , E′
j), arc subsets E∗ and non-negative throughput

rates (b−
j,v)j∈J,v∈V , such that G′

j is acyclic and every node v with bj,v > 0 is in Vj and reaches tj

within G′
j , there exists an IDE thin flow (x′, ℓ′).

Proof. For every vector x′ satisfying (ideTF1) and (ideTF2) we can define unique node labels ℓ′ that
fulfill (ideTF3) and (ideTF4). Furthermore, this mapping x′ 7→ ℓ′ is continuous. Here, existence
follows since E′

j is acyclic and the uniqueness follows from the fact that for every node v there is a
v-tj-path within E′

j . Thus, the only difficult part is to show (ideTF5), which we will do once more
with the help of Kakutani’s fixed point theorem (Theorem 2.9 on page 22).
In order to do so let X be the set of x′ vectors that satisfy (ideTF1) and (ideTF2), i.e.,

X :=
{

x′ ∈ RJ×E
≥0

∣∣∣∣∣
∑

e∈δ+
v

x′
j,e = bj,v for all j ∈ J and v ∈ V \ { tj }

and x′
j,e = 0 for all j ∈ J and e ∈ E \ E′

j

}
.

Clearly, X is compact, convex and non-empty. We define a set-valued function Γ : X → 2X as
follows:

Γ(x′) :=
{

y ∈ X : yj,e = 0 for all e ∈ E′
j with ℓ′

j,v < ρe

(∑
i∈J x′

i,e

)
+ ℓ′

j,w

}
where ℓ′ are the labels corresponding to x′. Then, Γ(x) is non-empty and convex. For non-emptiness
note that every node in Vj , except for tj , has at least one outgoing arc with ℓ′

j,v = ρe

(∑
i∈J x′

i,e

)
+ℓ′

j,w,
so y can send everything there. Convexity is clear as well, since x′ determines which arcs can be
used and those are fixed within Γ(x′).
Finally, in order to apply Kakutani’s fixed point theorem we show that { (x, y) | y ∈ Γ(x) } is a closed
set. Let (xn, yn)n∈N be a sequence within this set that converges in RJ×E × RJ×E . Since X is
compact, both sequences separately converge to some point x∗ and y∗. Let (ℓn)n∈N be the sequence
of associated node labels of xn and ℓ∗ the node labels of x∗. Since x 7→ ℓ′ is continuous we have
ℓ∗ = limn→∞ ℓn.
Finally, we need to show that y∗ ∈ Γ(x∗). Suppose there is a commodity j ∈ J and an arc
e = vw ∈ E′

j with y∗
j,e > 0 and ℓ∗

j,v < ρe

(∑
i∈J x∗

i,e

)
+ ℓ∗

j,w. But since ρe is continuous, there has to
be an n0 ∈ N such that yn

j,e > 0 and ℓn
j,v < ρe

(∑
i∈J xn

i,e

)
+ ℓn

j,w for all n ≥ n0. This is a contradiction
to yn ∈ Γ(xn).
With Kakutani’s fixed point theorem (Theorem 2.9) there exists an x′

∗ ∈ X with x′
∗ ∈ Γ(x′

∗), which
forms, together with the associated node labels ℓ′

∗, an IDE thin flow.

7.4 Constructing Instantaneous Dynamic Equilibria
Similar to the construction of Nash flows over time, we want to use IDE thin flows to extend an IDE
flow step by step.

α-Extensions. Consider an IDE flow f where the inflow rates f+
j,e are already defined for all times

in [0, θ) and are right-constant. We call f an IDE flow up to time θ. Note that due to continuity of
qe and ℓj,v we can determine the current shortest paths networks G′

j,θ = (Vj , E′
j,θ) as well as the

throughput rates bj,v(θ) since the feasibility conditions (7.3) and (7.4) determine unique outflow
rates f−

j,e(θ) for given inflow rates f+
j,e from the past.
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In order to extend f we consider an IDE thin flow (x′, ℓ′) and extend the inflow rates and ℓ-labels for
all j ∈ J , e ∈ E and v ∈ Vj by

f+
j,e(θ + ξ) := x′

j,e and ℓj,v(θ + ξ) := ℓj,v(θ) + ξ · ℓ′
j,v for all ξ ∈ [0, α).

We call this extended flow over time α-extension.

Feasible extension steps and thin flow phases. To ensure that we end up with an IDE flow up to
time θ + α the following requirements on the extension step size α must be satisfied.
First of all, the waiting time can never be negative, and therefore, the phase ends as soon as a queue
depletes:

qe(θ) + α ·
(∑

i∈J x′
i,e

νe
− 1
)

≥ 0 for all e ∈ E∗
θ . (7.6)

Furthermore, the phase ends as soon as an inactive arc gets active. Since queues can also grow on
inactive arcs (due to flow of other commodities) we need to take the changing rate of a queue into
account. Hence, for all j ∈ J and e = vw ∈ E \ E′

j,θ with v, w ∈ Vj we require that

ℓj,v(θ) + α · ℓ′
j,v ≤ τe + qe(θ) + α · ρe

(∑
i∈J x′

i,e

)
+ ℓj,w(θ) + α · ℓ′

j,w. (7.7)

Finally, the throughput rate should stay constant during a phase:

bj,v(θ + ξ) = bj,v(θ) for all j ∈ J and v ∈ V \ { tj } and all ξ ∈ [0, α). (7.8)

We call α > 0 feasible if it satisfies (7.6), (7.7) and (7.8). It is easy to see that such a feasible α > 0
always exists, since qe(θ) > 0 for all e ∈ E∗

θ and ℓj,v(θ) < τe + qe(θ) + ℓj,w(θ) for all j ∈ J and
e = vw ∈ E \ E′

j,θ as well as v, w ∈ Vj . Furthermore, the functions bj,v are right-constant, since f+
j,e

as well as rj are right-constant. Since τe > 0 for all e ∈ E we have that bj,v(θ) is well-defined and
constant on some small interval [θ, θ + ε).
For the maximal α we call the interval [θ, θ + α) a thin flow phase.

Theorem 7.5.
Consider an IDE flow up to time θ, an IDE thin flow (x, ℓ′) at time θ and a feasible α > 0. The
α-extension is an IDE flow up to time θ + α and the extended ℓ-functions denote the current shortest
path distances.

Proof. First note that the feasibility conditions are satisfied since the outflow rates f−
j,e are defined

exactly that way. Furthermore, flow conservation holds at all nodes v ∈ V \ { tj } and for every
commodity j ∈ J since for all ξ ∈ [0, α) we have

∑
e∈δ+

v

f+
j,e(θ + ξ) =

∑
e∈δ+

v

x′
j,e = bj,v(θ) = bj,v(θ + ξ) =


∑

e∈δ−
v

f−
j,e(θ + ξ) for v ̸= sj ,∑

e∈δ−
v

f−
j,e(θ + ξ) + rj(θ + ξ) for v = sj .

Next, we show that the ℓ labels satisfy Equation (7.5). Given a point in time θ + ξ with ξ ∈ [0, α) we
have by Lemma 3.1 (vii) applied to the total inflow rate f+

e (θ + ξ) that

q′
e(θ + ξ) =


f+

e (θ+ξ)
νe

− 1 if qe(θ + ξ) > 0,

max
{

f+
e (θ+ξ)

νe
− 1, 0

}
else,

 = ρe

(∑
i∈J x′

i,e

)
.

Note that q′
e(θ + ξ) is constant during the thin flow phase, i.e., qe(θ + ξ) = qe(θ) + ξ · ρe

(∑
i∈J x′

i,e

)
.
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For non-active arcs e = vw /∈ E′
j,θ with v, w ∈ Vj we have by (7.7) that

ℓj,v(θ+ξ) = ℓj,v(θ)+ξ·ℓ′
j,v ≤ τe+qe(θ)+ξ·ρe

(∑
i∈J x′

i,e

)
+ℓj,w(θ)+ξ·ℓ′

j,w = τe+qe(θ+ξ)+ℓj,w(θ+ξ).

For active arcs e = vw ∈ E′
j,θ we have by (ideTF4) that

ℓj,v(θ + ξ) = ℓj,v(θ) + ξ · ℓ′
j,v ≤ τe + qe(θ) + ℓj,w(θ) + ξ ·

(
ρe

(∑
i∈J x′

i,e

)
+ ℓ′

j,w

)
= τe + qe(θ + ξ) + ℓj,w(θ + ξ).

Since there has to be one active arc that satisfies (ideTF4) with equality, the same arc satisfies the
inequality above with equality, which shows that (7.5) holds. In other words, the extended ℓ labels
denote the current shortest path distances in the α-extension.
Finally, we show that the α-extension satisfies the IDE condition (IDE). For all ξ ∈ [0, α) and all arcs
e = vw ∈ E we have that

f+
j,e(θ + ξ) > 0 ⇒ x′

j,e > 0

⇒ ℓ′
j,v(θ + ξ) = ℓ′

j,v
(ideTF5)= ρe

(∑
i∈J x′

i,e

)
+ ℓ′

j,w = q′
e(θ + ξ) + ℓ′

j,w(θ)

⇒ e ∈ E′
j,θ+ξ.

Hence, the α-extension is indeed an IDE flow up to time θ + α.

As we are now able to extend IDE flows by some small time interval, we can use an approach similar
to the one for Nash flows over time in order to show the existence of an IDE flow for all times.

Theorem 7.6.
For right-constant inflow rate functions, there exists an IDE flow f .

Proof. Let F0 be the set of tuples (f, θ), where θ ∈ R≥0 ∪ { ∞ } and where f is an IDE flow up to
time θ with right-constant functions f+

e and f−
e . We define

θ̂0 := sup { θ ≥ 0 | there exists an IDE flow f such that (f, θ) ∈ F0 } .

If θ̂0 = ∞ we are done, so suppose θ̂0 < ∞. There exists an IDE flow f1 with θ1 := θ̂0
2 such that

(f1, θ1) ∈ F0. With this we define

F1 :=
{

(f, θ) ∈ F0

∣∣∣ f
∣∣
[0,θ1) = f1

}
.

Here, f
∣∣
[0,θ1) denotes the flow over time up to time θ1 that is obtained by restricting all in- and

outflow rates to the interval [0, θ1). Note that if f is an IDE flow up to time θ and θ > θ1 then f
∣∣
[0,θ1)

is an IDE flow up to time θ1.
The set F1 is non-empty, so we set

θ̂1 := sup { θ ≥ 0 | there exists an IDE flow f such that (f, θ) ∈ F1 } .

By Theorem 7.5 we know that θ̂1 > θ1, and therefore θ̂1 ∈ (θ1, θ̂0]. Let θ2 := θ̂1−θ1
2 . Continuing

this construction, we obtain a strictly increasing sequence (θi)i∈N and a non-increasing sequence
(θ̂i)i∈N with θi < θ̂i for all i ∈ N and θ̂i − θi ≤ θ̂0

2i → 0 for i → ∞. Let θ∗ be the limit of these two
sequences. By taking point-wise limits of the sequence (fi)i∈N we can construct an IDE flow f∗ such
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that (f∗, θ∗) ∈ F0. These point-wise limits exist for all θ < θ∗, since the inflow rates at time θ of fi

are constant with respect to i as soon as i is large enough such that θi > θ.
Again by Theorem 7.5 we can extend f∗ by some α > 0 but this is a contradiction to the definition of
θ̂i for all i with θ̂i ∈ [θ∗, θ∗ + α). Hence, θ̂0 = ∞, which finishes the proof.

Example. In Figure 7.1 on the next page we give an example of an IDE flow with three commodities.
At the beginning at time 0, the shortest path from s1 to t1 is clearly the direct top route (s1, v1, s2, t1)
with a current shortest distance of 9. Hence, all particles of commodity 1 take this path at the start.
However, as soon as the first particle of commodity 1 arrives at v1 at time 3, we observe that
commodity 2 has built up a large congestion on arc s2t1. For this particle both paths (v1, s2, t1) and
(v1, v2, s3, v3, t1) now have a current distance of 12. Since the queue on s2t1 continues to grow due
to commodity 2, the arc v1s2 becomes inactive for commodity 1 right after time 3. Thus, all particles
of this commodity have to take the bottom route.
At time 4 the first particle of commodity 3 reaches node v3 and since both outgoing arcs have a
capacity restriction, the flow has to split up in order to ensure that both arcs v3t1 and v3t2 stay active.
Hence, a flow rate of 3 enters arc v3t1 and the remaining flow rate of 1 takes v3t2.
The first particle of commodity 1 arrives at s3 at time 9 only to recognize that there is now a huge
congestion on arc v3t1. With the current waiting times it would take 6 + 15 = 21 time units to stay
on this bottom path, whereas the path (s3, v1, s2, t1) has a current path distance of only 12. In other
words, since s3v3 is not active anymore, all flow particles of commodity 1 choose to go back to the
top route, where they have done a full cycle at time 12. As the queue on s2t1 is only decreasing, this
time, every flow particle sticks with its choice of the top route until leaving the network.

7.5 Further Results on Instantaneous Dynamic
Equilibria

In the following we give a brief overview of further interesting results on IDE flows.

Non-termination. First of all, it is worth noting that IDE flows might not terminate. By this we mean
that, even though the network inflow rates stop sending in flow at some point in time, the IDE flow
keeps cycling in the network indefinitely. Such a strange behavior is really surprising at first sight
and the construction of a network for proving this is quite complicated.
The rough idea is to consider two commodities, each cycling in multiple copies of the same network
gadget that consists of two directed cycles with one common arc. In order to force the flow to
keep cycling in these gadgets we connect each node along the cycles with the sink by a path that is
directed through multiple copies of the gadget of the other commodity. By careful construction it is
possible that the waiting times on these paths behave exactly in such a way that whenever the flow
reaches a node the current fastest way is to stay in the double-cycle-gadget and to leave it at a node
further ahead. But as soon as the flow reaches this node, the waiting times have changed and, again,
the current shortest path forces the flow to stay in the gadget. In other words, the flow keeps cycling
and builds up a queue on the central arc from time to time. Exactly this arc, with varying waiting
times, is used by paths of the other commodity. For more details on this we refer to [36].

Termination for single-destination networks. If all commodities have the same destination an IDE
flow essentially becomes a single-commodity flow over time. In this case it is possible to show that
the flow always terminates, i.e., that all flow reaches the destination at some point in time if the
network inflow rate has finite support. The basic idea to show this is to consider the flow closest to
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Figure 7.1: An example of an IDE flow with three commodities. The network properties are displayed on top.
The transit time of all arcs is 3 and all capacities are large enough except for νs2t1 = 1, νv3t1 = 3

4
and νv3t2 = 1

4 . In the middle some of the IDE thin flows are depicted at crucial points in time.
Arcs that are active for some commodities are shown in the respective colors. Positive thin flow
values x′

j,e are shown next to each arc and the values in the boxes next to the nodes are the ℓ′-labels
of the respective commodity. In the bottom we show the flow over time at some snapshots in time.
Here, the labels +q indicates a waiting time of q for all particles that enter this arc at this moment
in time.
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the common destination. This flow will never go in cycles. Instead, it takes the shortest path to the
sink according to transit times only and leaves the network there. Again, for details we refer to [36].

Non-uniqueness. As a final remark on IDE flows we want to mention that they are not unique in
any sense, not even for a single commodity. To see this consider a network consisting of two parallel
s-t-paths P = (e1, e2) and P ′ = (e′

1, e′
2) of equal total transit time. If the first arcs, e1 and e′

1, of both
paths have large capacities (larger than the network inflow rate), then every distribution of flow into
e1 and e′

1 is a valid IDE thin flow at the beginning, since no queue is building up.
But not even the current shortest path distances are unique. Suppose that the second arcs, e2 and e′

2,
on both paths have very small capacities. Then the queues, and therefore the current shortest path
distances, heavily depend on the distribution of flow into the paths at node s. But since the particles
do not anticipate later stages, the decision mode at s does not depend on the capacities of e2 or e′

2 at
all. Hence, depending on the IDE thin flow at time 0 we end up with different current shortest path
distances later on.
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Future Research and Conclusion 8
In this final chapter of this thesis we want to take a look back, give an overview of the results we
have achieved so far and set them into context. Even though we extended the Nash flow over time
model by a fair amount, this is by no means a complete theory yet. Therefore, we want to also have a
look into the future and give an outlook on further research as well as discuss a number of problems
that remain open.

8.1 Review
Motivated by the dynamic traffic assignment problem and with the goal in mind to obtain a better
understanding of the complex traffic dynamics, we considered a dynamic game in a flow over time
model with deterministic queuing. The dynamic equilibria, called Nash flows over time, in the base
version of this model was already understood quite well, but is only a very rough approximation of
a real-world traffic scenario. In order to close the gap between large-scale simulation tools, which
work well in practice but lack any provable foundation, and the mathematical theory, we extended
this base model by several very natural traffic features and showed that, by extending the proof ideas,
we could, in most cases, preserve the existence and the structural insights of dynamic equilibria.
As a first starting point we introduced time-dependent capacities and time-dependent speed limits in
order to represent changes in the road network, such as planned construction work or school zones.
This extension changes the base model only slightly and it is no surprise that it is possible to transfer
the concept of thin flows with resetting and the construction of Nash flows over time with only minor
adjustments.
Much more challenging was the consideration of multiple commodities in such a dynamic network
game. The essential property of a global FIFO principle does not hold for these scenarios, and
therefore, it is not possible anymore to extend multi-commodity Nash flows over time step by step.
Instead, we have to consider all infinitesimally small players at the same time as the choice of early
particles depends not only on all the flow already in the network but may also depend on all future
flow. Even though we could not use any of the techniques of the base model, we were still able to
show the existence of dynamic equilibria in this multi-commodity setting with the help of infinite
dimensional-variational inequalities. Since this was known prior to the work in this thesis, the main
contribution is the structural insight into these Nash flows over time, as we could show that their
derivatives have to satisfy a set of conditions similar to the thin flow equations. The major difference
to the single-commodity case is that we cannot consider each thin flow isolated anymore, but instead,
we have to take into account the flow of the other commodities (the so-called foreign flow), and
therefore, we have to consider all flow from the past and the future simultaneously. Unfortunately,
this still does not give a clear instruction on how to construct Nash flows over time with multiple
commodities, however, for the special case that all commodities share the same origin we showed
that the problem of constructing a Nash flow over time reduces to the single-commodity case. The
same holds true for the other extreme case, that every particle can start at multiple origins but they
all share a common destination.
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Clearly, the extension of the base model to a model with spillback and kinematic waves is one of the
main contributions of this thesis. These fundamental traffic features, which are especially relevant in
highly congested networks, were a huge challenge for the deterministic queuing model. The key
idea is to restrict the total amount of flow on each arc by an arc specific storage capacity and to
model the backwards moving gaps between vehicles by a gap flow over time. In order to obtain
a well-defined flow over time based on the route choices of the particles we introduced a priority
rule on each intersection. The fair allocation condition guarantees that, in the case of spillback, the
particles merge according to the outflow capacity of each incoming link. As we only considered a
single-commodity we could, again, use the network-wide FIFO principle in order to construct a Nash
flow over time in this kinematic wave model. However, most of the proof ideas do not transfer to this
extension, and therefore, most of the proofs became much more involved. In addition, we observed
that the arrival times of these dynamic equilibria are not unique anymore and that, due to the fact
that congestions can block intersections, the price of anarchy is unbounded in the spillback model.
Finally, we considered a different type of flows over time, called instantaneous dynamic equilibria.
Here, particles do not predict the future evolution, but instead, each of them chooses a route
depending on the current network configuration, i.e., the current shortest distance to the destination.
As these might change drastically along the way, each player is allowed to adopt his or her route choice
on the way. Even though these flows over time do not form a game theoretical Nash equilibrium,
they are well motivated by real-world scenarios since traffic users, following a navigation system,
might get re-routed as soon as the current traffic conditions change. As we only have to consider the
current waiting times it becomes much easier to construct such IDE flows. In fact, we could even
handle multi-commodity IDE flows with the same thin flow technique we used for single-commodity
Nash flows over time.

8.2 Open Problems
Even though we have achieved quite a lot already, there still remain several open problems for
further research. We want to mention the most prominent future challenges on Nash flows over time
in the following.

Number of thin flow phases. We conjecture that, at least for the base model, the number of thin
flow phases is finite for every network. It has been shown that this number can be exponential in the
network size [19], but so far, it is not even clear whether there is a network where the extension step
sizes converge to 0, or if there exists some network-dependent ε > 0 such that each thin flow phase
has at least length ε. In all our experiments, however, the Nash flow over time had a final phase that
lasts indefinitely.
This question is very relevant for computing Nash flows over time algorithmically. If there exists an
instance that produces infinitely many phases, then the corresponding dynamic equilibrium can most
likely not be described by a finite description, and hence, it cannot be computed algorithmically.

Computation complexity of thin flows. Related to the number of thin flow phases is the question of
the complexity of computing a single thin flow with resetting. The mixed integer formulation for the
base model, which we discussed in Section 3.6.1, shows that it is possible to compute a thin flow in
exponential running time and that this problem lies in the complexity class NP. However, it remains
a challenging open problem whether this problem is NP-hard, meaning that we cannot hope for a
fast algorithm, or if it can be computed in polynomial time.
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Price of anarchy. For the kinematic wave model it is very easy to see that all versions of the price
of anarchy are unbounded, which can already be shown for very simple network topologies; see
Figure 6.6 on page 114. For the base model, however, it remains an open problem for now. With the
latest progress by Correa et al. in [20] it seems as if it is only a small step to show a bound of e

e−1
for the time price of anarchy, but the related monotonicity conjecture (Conjecture 3.12 on page 42)
turns out to be more challenging to prove than expected.

Uniqueness of earliest arrival times. In the kinematic wave model we could show that spillback thin
flows do not have unique ℓ′-labels, and hence, there exist networks with multiple Nash flows over
time with different earliest arrival times. In the base model, however, the ℓ′-labels of a thin flow with
resetting are uniquely determined, but it still remains an open question whether this translates to
unique earliest arrival times. For more details on this topic we refer to Section 3.6.2 on page 41.

Structure of multi-commodity Nash flows over time. As a first step, we showed in Section 5.1.3 that
the derivatives of a multi-commodity Nash flow over time are characterized by the multi-commodity
thin flow conditions. Unfortunately, the properties of the x′- and ℓ′-functions are not obvious. We
conjecture that the earliest arrival times ℓ must be piece-wise linear, or in other words, the ℓ′ functions
must be piece-wise constant. The intuition behind this is the following consideration. Whenever a
current shortest path changes for some commodity, this means that either an arc became active or a
queue depleted. It seems that every arc can only be responsible for a countable amount of events and
every event will cause at most a countable amount of jump points for the ℓ′-functions. Unfortunately,
we were not able to prove this yet.

Long-term behavior of Nash flows over time in the kinematic wave model. For the base model the
long-term behavior of Nash flows over time is well understood as long as the minimal s-t-cut is
smaller than the network inflow rate. In fact, a dynamic equilibrium reaches a steady state if, and
only if, this cut condition is satisfied. A characterization of the long-term behavior of a Nash flow
over time in the spillback or kinematic wave model remains an open problem. Is it even possible to
denote simple conditions on the network in order to guarantee a steady state? Due to the nature of
spillback, Nash flows over time are even harder to predict in this extended model.

IDE flows in the spillback model. A probably simpler open problem is the question whether the
concept of an IDE flow can be transferred to the spillback, or even to the kinematic wave, model. As
the effective capacity cv ·ν−

e of an arc e can change drastically in the spillback model, it is not obvious
what information is available for particles to choose their routes. In the model without spillback we
use the current waiting times of each arc, which are the actual waiting times for particles entering
the link at this very moment. In a spillback model, however, the actual waiting times heavily depend
on the future evolution of the flow over time since arcs further downstream might become full and
restrict the outflow rates. Hence, the first step to transfer IDE flows to the spillback model would be
to consider a reasonable information model.

Combination of IDE flows and Nash flows over time. The main difference between IDE flows and
Nash flows over time is that the particles of an IDE flow only consider the current waiting times,
whereas the particles of a Nash flow over time predict the complete future flow evolution. Hence,
an obvious question is, whether there exists a combined flow over time model with a parameter
H ∈ [0, ∞), which describes how far particles predict the future. For a well-defined model these
equilibrium flows should be equal to IDE flows for H = 0 and equal to Nash flows over time for an
H that is larger than the largest travel time from the source to the sink. The open questions, what
properties such equilibrium flows would have or whether they even exist, have not been studied so
far.
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Convergence of packet routing models to non-atomic flows over time. In the real world, traffic does
not consist of a continuous flow that can be split up arbitrarily, but instead, we have a set of
atomic, non-splittable vehicles. This is captured in so-called packet routing models, which have been
considered a lot. Surprisingly, the relation between these atomic models and non-atomic flows over
time has not been studied very intensively so far. As a first step, it would be interesting to show that
there exists a packet routing model with discrete time steps that converges to a flow over time in the
deterministic queuing model, when the packet size and the time step size go to zero. It would be
very interesting to study dynamic equilibria in such a packet routing model and maybe it could even
be possible to show that these equilibria also converge to a Nash flow over time.

Regulating dynamic equilibria by tolls. Tolls are an obvious tool for an authority to regulate traffic.
It would be very interesting to consider dynamic equilibria in a flow over time model with tolls.
Unfortunately, it seems that for fixed tolls a dynamic equilibrium would not implement a global FIFO
principle anymore since particles on roads with tolls might overtake particles on toll-free routes. By
some first considerations it seems that the existence of single-commodity Nash flows over time with
tolls is as complicated as it is to prove the existence of multi-commodity Nash flows over time without
tolls. Nonetheless, this is a very relevant research direction. For example, it might be possible to
implement tolls that force a dynamic equilibrium to be optimal, i.e., to be an earliest arrival flow.
For some first results in this regard we refer to the very recent preprint article of Frascaria and
Olver [34].

Further open questions. These are only some of the obvious open questions and there are many
more. For example, questions about a characterization of Braess arcs, about the minimal investment
into storage capacities in order to avoid spillback or about the robustness of Nash flows over time if
not all particles act rationally, just to name a few. Flow over time models with deterministic queuing,
and especially Nash flows over time, remain an interesting and active field of research with, hopefully,
a lot more to come.

8.3 Conclusion
It is fair to say that the contribution of the work presented in this thesis is a first but important step in
order to obtain a better mathematical understanding of the dynamic traffic assignment problem. We
provide important structural insights into dynamic equilibria in order to build a solid mathematical
foundation, which is not only interesting from an academical perspective but also useful to improve
and evaluate large-scale simulation tools used for real-world scenarios. In order to improve the traffic
infrastructure and to reduce congestions in highly populated regions it is essential that network
designers can rely on accurate forecasts, which can be provided by such simulations.
Even though this is only a small part in the overall picture and there are a lot of open problems
remaining, the research work will continue, and hopefully sooner than later, mathematics, and
science as a whole, will have a positive impact on one of urgent problems of today’s society, the
climate change. It might be too late to prevent most of the drastic consequences, but nonetheless,
science needs to try its best to reduce anthropogenic emissions of atmospheric green house gases in
order to temper the impact on our society and on nature as a whole. There is no planet B.
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