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Abstract

The mathematical approaches for modeling dynamic traffic can roughly be divided into two cat-
egories: discrete packet routing models and continuous flow over time models. Despite very vital
research activities on models in both categories, the connection between these approaches was poorly
understood so far. In this work we build this connection by specifying a (competitive) packet routing
model, which is discrete in terms of flow and time, and by proving its convergence to the intensively
studied model of flows over time with deterministic queuing. More precisely, we prove that the limit
of the convergence process, when decreasing the packet size and time step length in the packet rout-
ing model, constitutes a flow over time with multiple commodities. In addition, we show that the
convergence result implies the existence of approximate equilibria in the competitive version of the
packet routing model. This is of significant interest as exact pure Nash equilibria, similar to almost
all other competitive models, cannot be guaranteed in the multi-commodity setting.

Moreover, the introduced packet routing model with deterministic queuing is very application-
oriented as it is based on the network loading module of the agent-based transport simulation MAT-
Sim. As the present work is the first mathematical formalization of this simulation, it provides a
theoretical foundation and an environment for provable mathematical statements for MATSim.

Keywords— flow over time; packet routing; multi-commodity; dynamic equilibrium; convergence of discrete
to continuous; discretization error; approximate equilibrium; dynamic traffic assignment

1 Introduction.

Modeling traffic is an essential, but difficult task for which many different approaches have been developed during
the last decades. Some, mainly older approaches model traffic as time-independent static flows [23, 24, 30]. These
models are relatively simple and well-understood, e.g. regarding existence, uniqueness, efficiency, and structure of
equilibria, but they can only model aggregated traffic flows. In contrast to that, there are time-dependent dynamic
approaches, which lead to more realistic, but also more complex models. There exist various mathematical
approaches as well as simulation tools in this category. Some consider discrete time steps [12, 14, 25, 31],
while others model continuous time [13, 18, 26]. Some model traffic as discrete travelers (vehicles/packets)
[12, 13, 14, 25, 26, 31], while others model it as continuous splittable flows [1, 10, 11, 18]. In this paper we
consider two of these approaches: on the one hand, the intensively studied flow over time model with deterministic
queuing [18], which considers continuous time and continuous flow, and on the other hand, a packet routing model
considering discrete travelers and discrete time steps. The latter is based on the transport simulation MATSim
(Multi-agent transport simulation, see [14]) and it is very similar to the model studied by Werth et al. [31].

The flows over time model yields exact user equilibria, called dynamic equilibria or Nash flows over time [18].
They are guaranteed to exist [4, 5] and their structure has been studied intensively [6, 8, 16, 17, 20, 22, 29]. Even
though most of the work has been done for single-origin-destination networks, the existence results and further
structural insights have been transferred to the multi-terminal setting as well [5, 28]; see also [27] for an extended
analysis on all facets of Nash flows over time. Even more general, Meunier and Wagner [19] introduce a broader
class of dynamic congestion games and show the existence of dynamic equilibria.

On the application side, the large-scale, agent-based transport simulation MATSim is used to model real-
world traffic scenarios for transport planning purposes. To achieve this in reasonable time, MATSim simplifies
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real-world traffic by discretizing time and aggregating vehicles. A co-evolutionary algorithm is used to compute
approximate user equilibria. Despite the different perspectives of the two approaches, experiments by Ziemke et
al. [32] indicate that Nash flows over time are the limits of the convergence processes when decreasing the vehicle
size and time step length in the simulation coherently. This motivates the question whether the convergence of
the flow models can be verified and proven mathematically.

1.1 Our contribution.

To answer this question, we introduce a multi-commodity packet routing model, which is basically a mathematical
formalization of MATSim’s network loading module. This packet routing model with deterministic queuing can
be seen as a refinement of the existing packet model studied by Werth et al. [31].

The main contribution of this work consists of the proof that for a fixed commodity-wise flow supply the
packet flow in the discrete model converges to the corresponding flow in the continuous model when the time step
length and packet size go to zero.

On a high level, the proof works as follows. We assign particles to packets and do an induction over time
to show that the travel time difference between particles and corresponding packets is bounded. For this, we
consider each arc of the network individually and show how to bound the arrival time deviation between particles
and packets at the head of the arc in dependency on the deviation given at the tail. As traversing an arc takes
at least a minimum amount of time, the induction hypothesis can be applied.

Note that this convergence result focuses on the network loading aspect of the models and does not consider
any game-theoretical aspects yet, i.e., the routes for the commodities are fixed. Up to our knowledge, the presented
work is the first to prove convergence of a discrete to a continuous model in the dynamic setting.

Additionally, we show that, as a consequence of the convergence proof, the competitive version of the packet
routing model possesses approximate user equilibria. This is particularly surprising since – up to our knowledge
– the existence of (approximate) pure Nash equilibria in a multi-commodity setting has not been proven for
other similar competitive packet routing models. Note that exact multi-commodity pure Nash equilibria are not
guaranteed to exist in most packet routing models; this is also the case for the model presented here.

Our results are of significant interest as they are the first step towards the transfer of established structural
results on dynamic equilibria from flows over time to competitive packet routing games. On the one hand, this
provides the first building block for a mathematical foundation of MATSim, on the other hand, the convergence
of the network loading module of the widely used transport simulation strengthens the relevance of dynamic
equilibria in the flows over time model.

1.2 Further related work.

The connection between discrete and continuous models in dynamic transportation settings has been studied
before. Otsubo and Rapoport [21] consider the Vickrey model and focus on experimental comparisons and
Cantarella and Watling [2] compare discrete and continuous time models by presenting mathematical tools and
applications and unifying both in a single model.

In static routing games, convergence has been shown very recently by Cominetti et al. [7]. They prove
convergence of equilibria in routing games from two perspectives, on the one hand, when player sizes decreases,
and on the other hand, when the probability with which players participate in the game decreases.

For flows over time a connection between discrete and continuous optimization problems was established by
Fleischer and Tardos [9] in 1998. They transferred optimization algorithms for discrete-time flow models to a flow
model with continuous time.

The competitive packet routing model presented in this paper is similar to existing packet routing models
with first in first out (FIFO) rules; see [3, 15, 25, 31]. However, each model has a different focus. Werth et
al. [31] consider complexity questions and the price of anarchy for several different objective functions: arrival
times and bottleneck costs as players’ objectives and sum of completion times as well as makespan as social cost.
While Ismailli [15] analyzes the computational complexity of computing a best response and a Nash equilibrium,
Scarsini et al. [25] analyze the price of anarchy of a packet routing model with periodic inflow rates. Finally, Cao
et al. [3] analyze the existence of subgame perfect equilibria.

2 Packet routing model with deterministic queuing.

In this section, we formally introduce our packet routing model, which is motivated by the network loading model
of MATSim. Packets with individual origins and destinations travel in discrete time steps through a network,
where arcs have a transit time and a capacity. After traversing an arc, packets might be delayed at bottlenecks,
where they have to wait with other packets in a point queue. In order to enter the next arc, packets from different
incoming arcs are merged as smoothly as possible, similar to the zipper-style merging from real traffic. The length
of a time step and the packet size are given by some discretization parameters (α, β), which are crucial to show
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convergence later on. Note that our model is similar to the model of Werth et al. [31]. The only differences are
the tie-breaking rules in the merging process and that we allow fractional capacities.

2.1 Preliminaries.

Units. Since we consider convergence later on, we keep the time and packets size flexible. As help for orientation,
we introduce some units for time and for the size of the packets. We fix two base units, namely sec for a base
unit of time, and vol for the base unit of packet volume. Note, however, that the used variables are all considered
to be unitless and we use these base units only for intuition.

Network. A network is given by a directed graph G = (V,E), where every arc is equipped with a transit time
τe > 0 and a capacity νe > 0. The transit time denotes how long it takes to traverse an arc, measured in secs.
The capacity restricts the flow rate that is allowed to leave the arc. Hence, it is measured in flow volume per time
unit, i.e., vol/sec.

Discretization. For our packet routing model we specify two discretization parameters α, β > 0, one for the
time step length and one for the packet sizes. In other words, one time step has a duration of α sec and each
packet has a volume of β vol. Since the point in time corresponding to a time step t ∈ N0 is given by αt, the set
of all these points in time is given by Θα := αN0 = { 0, α, 2α, . . . }. In addition, we use rounding brackets in order
to round to the previous or next element of Θα:

bxcα := max { θ ∈ Θα | θ ≤ x } and dxeα := min { θ ∈ Θα | θ ≥ x } .

Analogously, this notation is also used for β, i.e.,

bxcβ := max {φ ∈ βN0 | φ ≤ x } and dxeβ := min {φ ∈ βN0 | φ ≥ x } .

Discretized network. Given a network and discretization parameters, we normalize the arc properties as
follows. The number of time steps required for a packet to traverse an arc is denoted by τ̂e := dτeeα

α
∈ N. The

maximum number of packets that are allowed to leave an arc at each time step is given by ν̂e := νe·α
β

. Note that
ν̂e does not need to be an integer. The fractional remainder is transferred to the next time step, as described
later.

Packets. Given a network G and discretization parameters α and β, we consider n packets of volume β with a
path Pi connecting an origin-destination pair (oi, di) ∈ V 2 and a release time ri ∈ Θα for all i ∈ N := { 1, 2, . . . , n }.
The release time step is hence given by r̂i := ri

α
∈ N0.

2.2 Network loading.

Given a network, discretization parameters, and a set of packets it is necessary to determine the movement of the
packets through the network. We do this by specifying the arc dynamics and the node transitions algorithmically,
which combined determines the position of every packet over time. In every discrete time step, we first consider
the dynamic of all arcs. This primarily means determining the packets that leave each arc. Afterwards, the node
transition is executed for all nodes, moving the packets to the next arc on their respective path. This alternating
process is repeated for every time step until every packet has reached its destination. Note that this happens in
finite time, as packets travel along simple paths. Since all transit times are strictly positive, a packet can only
enter one arc per time step. This justifies processing all arc dynamics first while computing the node transitions
afterwards at each time step.

Arc queue. We consider every arc e of the network to be a packet queue Qe denoted as an ordered finite
sequence Qe(t) of packets for every time step t ∈ N0. In addition, packets are labeled with the time step at which
they have entered e. Note that at any time step the ordering of all packets that are currently on this arc respects
the arc entrance times. In other words, the queues operate by the first in first out (FIFO) principle. How ties
are broken for packets that enter an arc at the same time step is specified by the node transition algorithm given
below. In the following, we denote different parts of the arc queue, which are also illustrated in Figure 1.

Buffer. At every time step t the buffer Be(t) is defined as the sequence of packets on arc e, that have been
in Qe long enough time to possibly leave e at time step t. More formally, we define Be(t) to be the maximal
sequence of packets that satisfy

1. Be(t) is a suffix of Qe(t),

2. the arc entrance time step of all packets in Be(t) is at most t− τ̂e.

3



t = 10

112

τ̂e = 5

56

Be(10)

L−
e (10)

ν̂e = 3

Ze(10)

Qe(10)

9 22333588

Figure 1: Example of an arc queue Qe at time step t = 10. Different parts are highlighted: Packets in
the buffer Be, leaving packets L−e and waiting packets Ze. Within each packet, the arc entrance time
step is denoted.

Current capacities. Not necessarily all packets in the buffer will be able to leave the arc at time step t,
as their volume might exceed the current arc capacity. Since the discretized capacity ν̂e can be non-integer and
surely the number of packets leaving the arc has to be integer, the remainder is passed on to the next time step.
For this reason we introduce the current packet capacity ν̂e(t). It is initialized by ν̂e(0) := ν̂e and then defined
iteratively by

ν̂e(t) :=

{
ν̂e if |Be(t− 1)| ≤ ν̂e(t− 1),

ν̂e + ν̂e(t− 1)− bν̂e(t− 1)c else.
(1)

Note that bν̂e(t− 1)c describes the number of packets that will be allowed to leave arc e at time step t− 1 as
we specify in the next paragraph. Hence, ν̂e(t− 1)−bν̂e(t− 1)c is the unused remaining capacity of the last time
step, in the case that the number of buffering packets in Be(t− 1) exceeds the previous capacity ν̂e(t− 1).

Leaving packets. At every time step, the algorithm determines at every arc e a list of leaving packets L−e (t),
which is an ordered list of packets in the buffer that will leave the arc at this time step. Formally, L−e (t) is the
maximal sequence of packets that satisfies the following two conditions:

1. L−e (t) is a suffix of Be(t),

2. the number of packets in L−e (t) does not exceed the current capacity ν̂e(t).

In other words, these are the first bν̂e(t)c packets in line which have spent enough time on e to traverse it. Clearly,
this L−e (t) is unique and it can be determined algorithmically by considering one packet after the other in Be(t).

Waiting packets. The waiting packets Ze(t) at time step t are exactly the packets in the buffer Be(t) that
are not leaving at time step t, i.e., that are not contained in L−e (t). Following the naming of the flow over time
model we refer to Ze(t) as (waiting) queue.

Released packets. We have an additional list L−v (t) for each node v, which contains the packets that are
released into the network through v at time step t. In other words,

L−v (t) := { i ∈ N | oi = v and r̂i = t } .

Here, the ordering is given by the packet index.

Node transition. At each time step every leaving packet is moved from its current arc to its subsequent
arc according to its path. During this process, the ordering of the packets is preserved. Whenever packets from
multiple arcs enter into the same arc they are merged in a zipper-style way similar to real traffic. This means that
packets are merged separately on each arc proportional to the number of packets sharing the same previous arc;
see Figure 2 for an example. The precise procedure can be found in Algorithm 1 and is explained in the following.

The algorithm considers a node v at a fixed time step t and describes how packets traverse this node. The
basic idea is to consider each outgoing arc e individually. All incoming arcs e′ that contain at least one leaving
packet that wants to continue its journey on arc e are collected in the set A. Here, packets that enter the network
at node v at the current time step are treated as if they would be leaving packets of an additional arc. The packets
should merge as smoothly as possible. Hence, in order to obtain a good ordering of packets entering e, we define
a priority counter for all incoming arcs e′ that operates proportionally to the number of packets ye′ transiting
from e′ to e at the current time step. Initially, these counters are set to 1

ye′
and the incoming arc with the lowest

counter (highest priority) can send the next packet. Afterwards, the lowest counter is increased by 1
ye′

and if e′

4



Algorithm 1: Node transition at node v at a fixed time step t (the parameter t is omitted here).

Input: leaving packets L−e′ of all incoming arcs e′ ∈ δ−v ;
list of packets L−v that want to enter the network at v at the current time step.

Output: sorted list L+
e of packets entering arc e for all outgoing arcs e ∈ δ+v .

L+
e ← () for all e ∈ δ+v

for each e ∈ δ+v do

// initialization of incoming arcs:

for each e′ ∈ δ−v do
Ye′ ← ordered sublist of packets i from L−e′ with (e′, e) on path Pi
if |Ye′ | ≥ 1 then

ye′ ← |Ye′ | // number of packets going from e′ to e

ae′ ← 1
ye′

// priority counter (small means higher priority)

end

end
A← { e′ ∈ δ−v | |Ye′ | ≥ 1 } // arcs that contain packets moving into e

// initialization of released packets:

Yv ← ordered sublist of packets i from L−v where e is the first arc of path Pi
if |Yv| ≥ 1 then

yv ← |Yv| // number of packets released into e

av ← 1
yv

// priority counter

A← A ∪ { v } // v is treated as an incoming arc

end

// transition:

while A 6= ∅ do
e∗ ← arg mine′∈A ae′ // ties are broken arbitrarily (but deterministically)

L+
e .append(Ye∗ .pop()) // remove first packet from Ye∗, add it to end of L+

e

ae∗ ← ae∗ + 1
ye∗

if |Ye∗ | = 0 then
A← A \ { e∗ }

end

end

end
return (L+

e )e∈δ+v
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v

v

v

Figure 2: The node transition in three steps: leav-
ing packets of each incoming arc are depicted on
the left. The small arrows indicate onto which out-
going arc the packets will be moved. As a first step,
the packets get grouped by desired outgoing arcs
(middle). Finally, the packets are merged accord-
ing to the priority procedure (right side). Here,
ties are broken from the top incoming arc to the
bottom incoming arc.

ye1=2 ye2=5 ye3=1

0
1

23

4

56
7

8

Priority counter ae

1/ye1

1/ye2

1/ye3 =1

Figure 3: Visualization of the merging process with
priority counter. We consider the merging process
of the upper outgoing arc of Figure 2. For each
incoming arc, we draw the packets as a stack of
rectangles each of area 1 with a width of yei . The
height is then describing the increment of the pri-
ority counter. Whenever a packet is selected by
the algorithm, the height of the upper arc of the
rectangle corresponding to the packet equals the
priority counter. As packets with a low priority
counter are selected first, we can order the pack-
ets from the bottom to the top (always considering
the upper edge of the rectangle). Note that ties are
broken in favor of the arc with the lower index.

does not contain any further leaving packets it is removed from A. A visualization of the priority counter for the
merging process of the top outgoing arc in the example of Figure 2 is given in Figure 3. Note that in the end all
leaving packets are transferred onto their next arc and that this merging procedure is mainly important for the
ordering on the outgoing arcs.

Network loading. The loading of the network can be defined algorithmically as follows. For every time step,
we first consider all arcs and determine the leaving packets. Next, all leaving packets are moved to the next arc
of their path according to the node transition. Finally, the queues and the current capacities are updated. This
is described formally in Algorithm 2.

2.3 Competitive packet routing game.

In this section, we consider the model from a game-theoretical perspective, which means that every packet is
considered to be a player who aims at arriving as early as possible at her destination.

Strategies and costs. We are given a discretized network (V,E, (ν̂e)e∈E , (τ̂e)e∈E) and a set of packets N ,
each packet i ∈ N equipped with an (oi, di)-pair and a release time r̂i. Note that we assume that di is reachable
from oi for all i ∈ N . By considering the packets as players and denoting the set of all simple oi-di-paths as the
strategy set of player i, we obtain a competitive packet routing game.

For every path profile π = (Pi)i∈N the network loading given by Algorithm 2 determines the arrival time steps
(ĉi(π))i∈N . The arrival time given by ci(π) := α · ĉi(π) is the cost of player i, which she aims to minimize.

Equilibria. We consider exact pure Nash equilibria in this model. These are states in which no player can
arrive strictly earlier by unilaterally changing her path. This equilibrium concept has been considered in related
models before [3, 31].

In our model – similar to other packet routing models with FIFO rule – pure Nash equilibria do not exist in
general. This follows from the multi-commodity example presented by Ismaili [15], which we adapt to our model
here.
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Algorithm 2: Network loading.

Input: discretized network (V,E, (ν̂e)e∈E , (τ̂e)e∈E); set of packets N with (oi, di, Pi, r̂i)i∈N .
Output: arrival time steps (ĉi)i∈N .
t← 0
ĉi ←∞ for all i ∈ N
Qe(0)← () for all e ∈ E
ν̂e(0)← ν̂e for all e ∈ E
while ∃ i ∈ N with ĉi =∞ do

determine L−e (t) as defined in paragraph leaving packets for all e ∈ E
for each i ∈ N with i ∈ L−e (t) and e ∈ δ−di do

ĉi ← t // packet i has reached its destination

end
for each v ∈ V do

L−v (t)← list of all packets i ∈ N with r̂i = t and oi = v ordered by packet index
(L+

e (t))e∈δ+v ← NodeTransition((L−e (t))e∈δ−v , L
−
v (t))

end
for each e ∈ E do

set arc-entrance time step to t for each packet in L+
e (t)

Qe(t+ 1)← Qe(t)− L−e (t) + L+
e (t) // remove leaving & append entering packets

update the current capacity ν̂e(t+ 1) according to Equation (1)
end
t← t+ 1

end
return (ĉi)i∈N

Proposition 1. There are competitive packet routing games in our model for which no pure Nash equilibrium
exists.

Proof. Consider a game with six players played on the discretized network depicted in Figure 4 with α = β = 1.
We have two main players, a pursuer 1 going from oP to dP and an evader 2 going from oE to dE . Each of these
two players has exactly two paths to choose from, which we denote by top and bottom. Moreover, we have four
additional players 3, . . . , 6 with origins o3 = o4 = oE and o5 = o6 = oP and destinations d3, . . . d6. Note that
these players have a unique path, and hence only a single strategy. Their purpose is to transfer the information
between the main players.

All players have a release time of 0 and are ordered by their index in the beginning. In a tie-break in the
merging procedure the four long arcs (v1v6, v5v2, v7v4, v3v8) are prioritized. Note that all arc capacities are 1,
which implies that also the current capacities of all arcs are constant 1 (as there are no remaining capacities).
Therefore, at most one packet can leave an arc per time step. Furthermore, if two packets enter into an arc at
the same time the priority counter will always end up in a tie (both counters are 1), which means that the packet
coming from the prioritized arc (long arc) will always be transferred first.

First, we consider the network loading of the state where both the pursuer and the evader choose their

1

2

oP

1

dP

d3

v2v1

d4

v4v3

oE dE

d5

v6v5

d6

v8v7

1

1

1

1
1

1

1

1 1

1

1

1

2

2

2

2

2

156 234

Figure 4: Network of a game without pure Nash equilibrium. There are six players, indicated by different
colors. The transit times are depicted beside the arcs and all arcs have a capacity of 1.
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respective top path. In this case, the evader delays player 3 at the end of arc oEv5 by one time step and the
pursuer delays player 5 at oP v1. Thus, the pursuer enters arc v2d3 before player 3 (as she arrives there at time 3
and player 3 arrives at time 4). Hence, the pursuer reaches dP at time 5. On the other side, the evader is delayed
by player 5 when leaving v6d5 (since both players have entered the arc at the same time, but due to the tie-break,
player 5 is in front of the evader in the arc queue). Thus, the evader reaches dE at time 6.

Now consider the state where the pursuer chooses the top path and the evader chooses the bottom path. In
this case, the evader delays player 4 at the end of arc oEv7 by one time step and the pursuer still delays player
5 at oP v1. Thus, the pursuer enters arc v2d3 at the same time as player 3. By the tie-breaking rule of the arcs,
player 3 is inserted in the arc queue of v2d3 before the pursuer, and thus, delays her when leaving the arc. This
leads to an arrival time of the pursuer of 6. The evader reaches node v8 at time 3 when player 6 passed already
and can thus arrive without delay at time 5 in dE .

Since the game is highly symmetric this analysis gives us that the pursuer prefers to play strategy profiles
top/top and bottom/bottom, while the evader prefers strategy profiles top/bottom and bottom/top. Since this
is a classical matching pennies situation the game has no pure Nash equilibrium.

ε-Equilibria. Since the existence of pure Nash equilibria cannot be guaranteed, we consider approximate pure
Nash equilibria. In these states players choose nearly optimal strategies, i.e., they cannot improve by more than
ε by changing their paths.

Definition 1. For ε > 0 an ε-equilibrium is a strategy profile π = (Pi)i∈N such that for every player i ∈ N and
every simple oi-di-path P ′i it holds that

ci(π) ≤ ci(P−i, P ′i ) + ε.

Here, (P−i, P
′
i ) denotes the strategy profile where all players except player i act as in P and only player i plays a

different strategy, namely P ′i .

In the example of Proposition 1 every state is a 1-equilibrium but there do not exist any ε-equilibria for ε < 1.
Thus, for a given game and a given ε it is not obvious whether there exists an ε-equilibrium or not. In Section 6,
however, we prove that for any network (with given supply rates, which are defined later on) and any given ε > 0
we can find a discretization such that an ε-equilibrium exists.

3 Flows over time.

In order to be able to analyze the connection between the packet routing model and flows over time in the following
sections, we briefly introduce the multi-commodity flow over time model which is studied in [5, 11, 27, 28]. This
model extends the network flow concept by a continuous-time component. Each infinitesimally small flow particle
needs a fixed time to traverse an arc before it reaches a bottleneck given by the capacity rate of the arc. Whenever
the flow rate exceeds this capacity a queue builds up, which operates at capacity rate.

3.1 Model.

A flow over time instance consists of a network (V,E, (νe)e∈E , (τe)e∈E) together with a finite set of commodities J ,
where each commodity j ∈ J is equipped with a set of particles Mj = [0,mj ], mj ∈ R>0, an origin-destination-pair
(oj , dj) and an integrable and bounded supply rate function uj : [0,∞) → [0,∞). The inflow rate function uj
must have bounded support and must satisfy

∫∞
0
uj(ξ) dξ = mj .

A multi-commodity flow over time is represented by a set of functions f = (f+
j,e, f

−
j,e)j∈J,e∈E that are bounded

and locally integrable. These functions describe the rate with which the flow of commodity j enters and leaves
arc e at every point in time. Since flow does not enter the network before time 0, we set f+

j,e(θ) = f−j,e(θ) = 0 for
θ < 0 and all j ∈ J , e ∈ E. We denote the cumulative flow by

F+
j,e(θ) :=

∫ θ

0

f+
j,e(ξ) dξ and F−j,e(θ) :=

∫ θ

0

f−j,e(ξ) dξ.

Furthermore, we denote the total (cumulative) flow, which is the sum over all commodities, by

f+
e (θ) :=

∑
j∈J

f+
j,e(θ), f−e (θ) :=

∑
j∈J

f−j,e(θ), F+
e (θ) :=

∑
j∈J

F+
j,e(θ) and F−e (θ) :=

∑
j∈J

F−j,e(θ).

In order to describe the flow dynamics in the deterministic queuing model, several conditions need to be
fulfilled for almost all θ ∈ [0,∞). First of all, we need commodity-wise flow conservation at every node at every
point in time: ∑

e∈δ+v

f+
j,e(θ)−

∑
e∈δ−v

f−j,e(θ)


= 0 for all v ∈ V \ {oj , dj},
= uj(θ) for v = oj ,

≤ 0 for v = dj .

(2)
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Let the total flow volume in the queue at time θ be denoted by ze(θ). For particles that enter arc e at time θ
we obtain a waiting time qe(θ) and an exit time Te(θ). Formally, they are given by

ze(θ) := F+
e (θ − τe)− F−e (θ), qe(θ) :=

ze(θ + τe)

νe
and Te(θ) := θ + τe + qe(θ).

As the queue operates at capacity rate whenever we have a positive queue, we obtain the following condition
on the total outflow rate:

f−e (θ) =

{
νe if ze(θ) > 0,

min
{
f+
e (θ − τe), νe

}
if ze(θ) = 0.

(3)

Finally, we require that the outflow rate of a commodity j at time Te(ϑ) corresponds proportionally to its
fractional part of the total inflow rate at the entrance time ϑ:

f−j,e(θ) =

f−e (θ) ·
f+j,e(ϑ)

f+e (ϑ)
if f+

e (ϑ) > 0,

0 else,
(4)

where ϑ = min { ξ ≤ θ | Te(ξ) = θ }. This ensures that the proportions of the commodities are preserved during
the arc traversal. Additionally, this condition guarantees FIFO since flow of a commodity cannot overtake flow
of other commodities.

If Conditions (2) to (4) are met, we call f a feasible flow over time.

Arrival times. A given feasible flow over time f uniquely determines the node arrival times of a particle
φ ∈Mj along a simple oj-dj-path P . Note that particle φ enters the source oj at time

`Pj,oj (φ) := min

{
θ ≥ 0

∣∣∣∣ ∫ θ

0

uj(ξ) dξ = φ

}
.

For an arc e = uv of path P the arrival time at node v of particle φ is given by

`Pj,v(φ) := Te
(
`Pj,u(φ)

)
.

3.2 Multi-commodity Nash flows over time.

In order to consider dynamic equilibria in this setting, we first need to define the earliest point in time a particle
can arrive at a certain node. This depends on a given feasible flow over time f (in particular on the preceding
particles), but for clearance, we omit f in the following notation.

Earliest arrival times. For every commodity j ∈ J and particle φ ∈ Mj the earliest arrival time of φ at
some node v is given by taking the minimum arrival time at node v over all simple oj-dj-paths Pj containing v.
Formally,

`j,v(φ) = min
P∈Pj : v∈P

`Pj,v(φ).

Current shortest paths network. For every commodity j ∈ J and every particle φ ∈ Mj we define the
current shortest paths network E′j,φ by all arcs that are on a shortest oj-dj-path, i.e.,

E′j,φ :=
{
e ∈ E

∣∣∣ there exists a P ∈ Pj with e ∈ P and `Pj,dj (φ) = `j,dj (φ)
}
.

Finally, this enables us to define a dynamic equilibrium, which is a Nash equilibrium with infinitely many
players. It is a feasible flow over time, in which (almost) every particle corresponding to a player uses a quickest
oj-dj-path.

Definition 2. A feasible flow over time is a multi-commodity Nash flow over time if for all arcs e = uv ∈ E, all
commodities j ∈ J and almost all points in time θ ∈ [0,∞) it holds that

f+
j,e(θ) > 0 ⇒ θ ∈

{
`j,u(φ)

∣∣ φ ∈Mj such that e ∈ E′j,φ
}
.

For all networks and all supply rate functions uj ∈ Lp with bounded support such a Nash flow over time
exists [5]. Since this is the case in our model the existence of a Nash flow over time is always guaranteed.
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4 Coupling particles and packets.

In the following, we connect a flow over time instance with discretization parameters to obtain a packet routing
instance. Additionally, we transfer the definitions and notations from flows over time to the packet routing model.
Overall, this section serves as a foundation for the convergence proof in Section 5.

The setting is as follows. We are given a network G and a finite set of commodities J , each with an integrable
and bounded supply rate function uj : R≥0 → R≥0 that has bounded support. Let mj :=

∫∞
0
uj(ξ) dξ and

ūj := supθ∈R≥0
uj(θ). As we focus on the network loading problem we assume without loss of generality that each

commodity only uses a single fixed simple path Pj .
For given discretization parameters (α, β) we define for each commodity a set of discrete packets with suitable

release times and set up a toolbox of properties that connects discrete packet routings with flows over time.

Notation. Let f = (f+
j,e, f

−
j,e)j∈J,e∈E be a feasible multi-commodity flow over time with functions F+

j,e, F
−
j,e,

ze, qe, Te and `j,v as described in Section 3.

Packets. In order to obtain a packet flow, we consider packets Nj := { 1, 2, . . . , bmj/βc } with path Pj for every
commodity j ∈ J . The release time of packet i ∈ Nj is given by the release time of the last particle corresponding
to i, i.e.,

ri := min

{
θ ∈ Θα

∣∣∣∣ ∫ θ

0

uj(ξ) dξ ≥ i · β
}
.

Note that the total volume of all packets that commodity j is sending is given by β · |Nj | = bmjcβ .

In- and outflow functions. In order to describe the corresponding packet routing, the inflow rate g+
j,e(θ),

for θ ∈ Θα, denotes the combined volume of packets of commodity j that enter arc e in time step θ/α divided by
α (i.e., we obtain a rate in vol/sec). The outflow rate g−j,e(θ) is defined analogously. Formally, we have

g+
j,e(θ) :=

β

α
·
∣∣{ i ∈ Nj | i ∈ L+

e (θ/α) }
∣∣ and g−j,e(θ) :=

β

α
·
∣∣{ i ∈ Nj | i ∈ L−e (θ/α) }

∣∣ .
The cumulative inflow G+

j,e(θ) and the cumulative outflow G−j,e(θ) denote the combined volume of packets of
commodity j that have entered/left e up to time θ ∈ Θα (including time step t = θ/α). They are defined as

G+
j,e(θ) :=

∑
ξ∈Θα,ξ≤θ

g+
j,e(ξ) · α and G−j,e(θ) :=

∑
ξ∈Θα,ξ≤θ

g−j,e(ξ) · α.

The set of all commodities that use an arc e is denoted by Je := { j ∈ J | e ∈ Pj } and the set of all commodities
which pass node v is denoted by Jv := { j ∈ J | v lies on Pj }. For each arc e the total inflow function is denoted
by g+

e :=
∑
j∈Je g

+
j,e. Analogously, we define the total outflow function g−e and the total cumulative flows functions

G+
e and G−e . Naturally, all these functions map from Θα to R≥0. We extend this notation to R≥0 → R≥0 as

follows.

Refined time. In order to describe the arrival times and cumulative in- and outflows for the packet model
we use continuous piece-wise linear functions. The idea is to consider packets as a continuous flow that is equally
distributed along the time frame of one time step; see left side of Figure 5. The in- and outflow functions
g+
j,e, g

−
j,e : R≥0 → R≥0 are extended to be constant during each time step. In other words, we extend these

functions by setting g+
j,e(θ) := g+

j,e(dθeα) and g−j,e(θ) := g−j,e(dθeα) for all θ ∈ R≥0. With this the cumulative in-
and outflow functions are extended by

G+
j,e(θ) :=

∫ θ

0

g+
j,e(ξ) dξ and G−j,e(θ) :=

∫ θ

0

g−j,e(ξ) dξ.

The refined arrival time of packet i ∈ Nj at node v is defined as

`Dj,v(i) := min
{
θ ∈ R≥0

∣∣ G−j,uv(θ) ≥ i · β
}

= min
{
θ ∈ R≥0

∣∣ G+
j,vw(θ) ≥ i · β

}
for uv, vw ∈ Pj . Note that for v = oj the arrival time `Dj,v(i) is defined by G+

ojw with ojw ∈ Pj , and analogously,

for v = dj it is defined by G−udj with udj ∈ Pj . The superscript D indicates that we consider the discrete packet

model. We also call `Dj,v(i) the refined entrance time into vw.
As all packets of a commodity j take the same path and the arc dynamics follow the FIFO principle we have

that `Dj,v(i) < `Dj,v(i′) for i < i′. Note that packet i is processed in the node transition of v at time d`Dj,v(i)eα. The
refined arrival time also contains the information about the position k ∈ { 1, 2, . . . } of packet i among all packets
of commodity j that enter arc vw at this time. More precisely, the position k is obtained by

k =
1

α
·
(
`Dj,v(i)− (

time step︷ ︸︸ ︷
d`Dj,v(i)eα−α)

)
·

#packets of j in L+
vw︷ ︸︸ ︷

g+
j,vw(`j,v(i)) · α

β
.

A visual representation of the refined arrival times can be found in Figure 5.
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Figure 5: To exemplary illustrate the refined arrival times, suppose we have α = 0.5, β = 0.25 and eight
packets i = 1, 2, 3, 4, 5, 6, 7, 8 of commodity j. Suppose packet 1 and 2 enter arc e = vw at time 0.5,
packet 3 at time 1, packet 4, 5, 6, 7 at time 1.5 and packet 8 at time 2. As depicted on the left side the
packets are represented by a rectangle with area β that are equally distributed under the graph of g+j,e
in the time interval of length α right before the entrance time. The refined entrance time `Dj,v of packet i
is then given by the right edge of the rectangle of i. This can also be seen by considering the cumulative
inflow G+

j,e (right side of the figure). Hence, packet 5 has a refined entrance time of `Dj,v(5) = 1.25. It

enters the arc at time step d`Dj,v(5)eα = 1.5 on position k = (1.25− (1.5− 0.5))/0.5 · 4 = 2.

Queue sizes, waiting times and exit times. We define the commodity-specific queue size zDj,e, waiting
times qDj,e and exit times TDj,e for every commodity j corresponding to the flow over time model.

For a commodity j the commodity-specific queue size zDj,e is given for all θ ∈ R≥0 by

zDj,e(θ + dτeeα) := G+
j,e(θ)−G

−
j,e(θ + dτeeα).

Note that for θ ∈ Θα the queue size zDj,e(θ) describes the total volume of packets in Ze(θ/α) ∩ Nj . These are
exactly the packets of commodity j that have spend at least dτeeα time on e but are not selected to leave at time
step θ/α. The total queue size (or simply queue size) is given by zDe :=

∑
j∈Je z

D
j,e.

The waiting time function qDj,e is obtained by setting

qDj,e(θ) := min

{
q ≥ 0

∣∣∣∣∣
∫ θ+dτeeα+q

θ+dτeeα
g−j,e(ξ) dξ ≥ zDj,e(θ + dτeeα)

}

for θ ∈ R≥0. It describes the waiting time of packets entering arc e at refined time θ. With this we obtain the
exit time function

TDj,e(θ) := θ + dτeeα + qDj,e(θ).

The following lemma shows that this function indeed describes the exit time of a packet that entered e at
refined time θ.

Lemma 1. If packet i ∈ Nj enters e = uv at refined time `Dj,u(i) ∈ R≥0, it leaves e at refined time

`Dj,v(i) = TDj,e(`
D
j,u(i)).

Proof. Let θ := `Dj,u(i). By definition of qDj,e together with the fact that G+
j,e(θ) = iβ we have

TDj,e(θ) = θ + dτeeα + min

{
q ≥ 0

∣∣∣∣∣
∫ θ+dτeeα+q

θ+dτeeα
g−j,e(ξ) dξ ≥ zDj,e(θ + dτeeα)

}

= min

{
T ≥ θ + dτeeα

∣∣∣∣∣
∫ T

θ+dτeeα
g−j,e(ξ) dξ ≥ G+

j,e(θ)−G
−
j,e(θ + dτeeα)

}
= min

{
T ≥ 0

∣∣ G−j,e(T ) ≥ G+
j,e(θ)

}
= min

{
T ≥ 0

∣∣ G−j,e(T ) ≥ iβ
}

= `Dj,v(i).
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5 Convergence.

In this section, we finally show that every feasible flow over time is the limit of the sequence of packet routings
when decreasing the packet size and time step length coherently. Observe that if α went quicker to zero than β,
packets would get isolated, i.e., the number of time steps between two successive packets would increase (since the
current capacity ν̂e would go to zero). To avoid this and, even stronger, to guarantee that the number of packets
leaving a queue per time step becomes large, we require that β goes quicker to zero than α. More precisely, we
only consider sequences of convergence parameters (α, β) with α→ 0 and β

α
→ 0 from now on.

As key component for convergence we prove the following theorem.

Theorem 1. Let (V,E, (νe)e∈E , (τe)e∈E) be a network and J be a finite set of commodities, each j ∈ J equipped
with a simple path Pj and an integrable and bounded supply rate function uj with bounded support. Consider the
packet routing induced by discretization parameters (α, β) such that α and β

α
are sufficiently small. Given a node

v, it holds for every packet i ∈ Nj of commodity j ∈ Jv and the corresponding particle φ := iβ ∈Mj that∣∣∣`j,v(φ)− `Dj,v(i)
∣∣∣ ≤ √α · CK for K ∈ N such that `j,v(φ) < K · τ∗ or `Dj,v(i) < K · τ∗.

Here, C > 1 is a constant that only depends on the instance and τ∗ := mine∈E τe/2 > 0.

To be more precise, α is sufficiently small if
√
α is smaller than τ∗C−dH/τ

∗e, where H is the time when the
last particle left the network. For β/α to be sufficiently small it has to be smaller than 1 and small enough such
that there are at least two packets allowed to leave e at each time step, i.e., ν̂e = νe · α/β ≥ 2 (including when
entering the network, i.e., ūj · α/β ≥ 2 for all commodities j).

Note that this theorem implies a convergence rate of
√
α for the arrival times of a given packet-particle-pair.

Though, the constant might grow exponentially in the packet/particle index.
The roadmap of the proof goes as follows. We do an induction on K, i.e., in each induction step, we extend

the validity of the statement by τ∗ time units. This enables us to consider each arc individually. For the induction
step, we introduce a hypothetical flow over time that matches the inflow rates of the packet model but follows
the flow over time dynamics. With this additional ingredient, we are able to show that the exit times, and hence
the arrival times of the packets and corresponding particles do not differ too much.

For an important simplification, note that packets of a commodity j that enter into the network at a node
v behave like packets coming from an incoming arc with capacity ūj (cf. Algorithm 1). For the sake of clarity
we do not introduce additional notation but instead implicitly assume that δ−v includes these auxiliary arcs with
νe := ūj .

Furthermore, we define the rate bound κe for all arcs e = uv by

κe := max

 ∑
e′∈δ−u

(νe′ + 1) , νe + 1

 .

This is an instance constant that only depends on the arc capacities, including the upper bounds of the supply
rates. Since the number of leaving packets of each predecessor arc e′ (including the auxiliary arcs for newly
released packets) is upper bounded by ν̂e′ + 1 in every time step, we have that g−e′(θ) ≤ νe′ + β/α. Since β/α is
assumed to be smaller than 1, κe does indeed bound the maximal inflow into e as well as the maximal outflow of
e for both the packet model as well as the flow over time model.

We structure the proof with the help of three lemmas, which we present in the following. The first lemma
shows that the waiting time in the packet model can be approximated by the queue size divided by the capacity.

Lemma 2. For all arcs e = uv, all commodities j ∈ Je and every θ ∈ R≥0 the waiting time at arc e in the packet
model satisfies ∣∣∣∣qDj,e(θ)− zDe (θ + dτeeα)

νe

∣∣∣∣ ≤ 2α+
ακe
νe

+
β

νe
.

Proof. By the definition of the waiting times, we obtain for each commodity j′ separately that

zDj′,e(θ + dτeeα) =

∫ θ+dτeeα+qD
j′,e(θ)

θ+dτeeα
g−j′,e(ξ) dξ.

Hence, since all g−j′,e are non-negative, we obtain with jmax := arg maxj′∈J q
D
j′,e(θ) that

zDe (θ + dτeeα) ≤
∫ θ+dτeeα+qDjmax,e

(θ)

θ+dτeeα
g−e (ξ) dξ

=

∫ θ+dτeeα+qDj,e(θ)

θ+dτeeα
g−e (ξ) dξ +

∫ θ+dτeeα+qDjmax,e
(θ)

θ+dτeeα+qDj,e(θ)

g−e (ξ) dξ.

(5)
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For the right term, observe that for two packets i ∈ Nj and i′ ∈ Nj′ entering at the same refined time (so
in particular at the same time step) the total flow volume of packets entering between them is bounded by
α ·
∑
e′∈δ−u

(νe′ + β/α) ≤ ακe as this is the maximal volume that can transition at node u within one time step.
As we have FIFO on the arc the same is true for cumulative outflow at the exit times, i.e.,∣∣∣G−e (TDj,e(`

D
j,u(i)))−G−e (TDj′,e(`

D
j′,u(i′)))

∣∣∣ ≤ ακe.
In particular, we have∫ θ+dτeeα+qDjmax,e

(θ)

θ+dτeeα+qDj,e(θ)

g−e (ξ) dξ = G−e (TDjmax,e(θ))−G
−
e (TDj,e(θ)) ≤ ακe.

For the left term of (5) observe that for all time steps t with θ+ dτeeα < tα ≤ θ+ dτeeα + qDj,e(θ) +α the number
of leaving packets L−e (t) is bounded by the current capacity ν̂e(t).

The number of time steps in this interval (of length qDj,e(θ) + α) is upper bounded by qDj,e(θ)/α + 2. By the
definition of the current capacity in (1) we obtain that the number of packets that leave e within this interval is
upper bounded by (

qDj,e(θ)

α
+ 2

)
· ν̂e + 1.

Here that +1 is due to some potential remaining capacity that is transferred to the very first time step in the
interval. Hence, we obtain with ν̂e = α

β
νe that∫ θ+dτeeα+qDj,e(θ)

θ+dτeeα
g−e (ξ) dξ ≤ β ·

(
qDj,e(θ)

α
+ 2

)
· ν̂e + β = qDj,e(θ) · νe + 2 · α · νe + β.

In conclusion, (5) yields the following upper bound

zDe (θ + dτeeα) ≤ qDj,e(θ) · νe + α · (κe + 2 · νe) + β.

For the lower bound, we consider jmin := arg minj′∈J q
D
j′,e(θ), which yields

zDe (θ + dτeeα) ≥
∫ θ+dτeeα+qDjmin,e

(θ)

θ+dτeeα
g−e (ξ) dξ

=

∫ θ+dτeeα+qDj,e(θ)

θ+dτeeα
g−e (ξ) dξ −

∫ θ+dτeeα+qDj,e(θ)

θ+dτeeα+qDjmin,e
(θ)

g−e (ξ) dξ.

(6)

With the same argument as before, we obtain for the right term that∫ θ+dτeeα+qDj,e(θ)

θ+dτeeα+qDjmin,e
(θ)

g−e (ξ) dξ ≤ α · κe.

For the left term of (6), we consider time steps t with θ+dτeeα+α ≤ tα < θ+dτeeα+qDj,e(θ). The number of time
steps in this interval (of length qDj,e(θ) − α) are bounded from below by qDj,e(θ)/α − 1. Furthermore, in all these
time steps the set of leaving packets L−e (t) has maximal size, i.e.,

∣∣L−e (t)
∣∣ = bν̂e(t)c. This is true since packet i of

commodity j that has entered at θ is in Be(t) but not in L−e (t) (since it leaves e only at time dθ+dτeeα+qDj,e(θ)eα).
Hence, with the definition of the current capacity (see Equation (1)) the number of packets that leave the arc
within this interval is bounded from below by(

qDj,e(θ)

α
− 1

)
· ν̂e − 1.

Here, the last −1 is due to the rounding in the last time step of the interval. We obtain that∫ θ+dτeeα+qDj,e(θ)

θ+dτeeα
g−e (ξ) dξ ≥ β ·

(
qDj,e(θ)

α
− 1

)
· ν̂e − β = qDj,e(θ) · νe − α · νe − β.

In conclusion (6) yields that
zDe (θ + dτeeα) ≥ qDj,e(θ) · νe − α · (κe + νe)− β.

Dividing the upper and the lower bound by νe results in

−ακe
νe
− α− β

νe
≤ zDe (θ + dτeeα)

νe
− qDj,e(θ) ≤ α

κe
νe

+ 2α+
β

νe
,

which completes the proof.
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Hypothetical flow over time. For a fixed arc e = uv we introduce the hypothetical flow over time by
setting h+

j,e := g+
j,e and h−j,e : R≥0 → R≥0 according to (3) and (4). In other words, we take the inflow rates of

the discrete packet model, but determine the outflow rates according to the flow over time model. We define the
cumulative flows as before by H+

j,e(θ) :=
∫ θ

0
h+
j,e(ξ) dξ and H−j,e(θ) :=

∫ θ
0
h−j,e(ξ) dξ. Clearly, we have H+

j,e = G+
j,e,

but in general we cannot expect that H−j,e equals G−j,e. Again, we define the total hypothetical cumulative flow

by H+
e :=

∑
j∈J H

+
j,e and H−e :=

∑
j∈J H

−
j,e. The queue size, waiting time and exit time function for the

hypothetical inflow rate are denoted by zHe , qHe and THe . We can even define hypothetical arrival times at u and
v for all φ ∈Mj \ { 0 } by

kj,u(φ) := min { θ ∈ R≥0 | H+
j,e(θ) = φ } and kj,v(φ) := min { θ ∈ R≥0 | H−j,e(θ) = φ } .

With this definition, the particles (β(i− 1), βi] ⊆Mj correspond to packet i ∈ Nj . Particle 0 is a special case for
which we explicitly include it into packet 1, by defining

kj,u(0) := max { θ ∈ R≥0 | H+
j,e(θ) = 0 } and kj,v(0) := max { θ ∈ R≥0 | H−j,e(θ) = 0 } .

Clearly, we have that kj,u(iβ) = `Dj,u(i) for all i ∈ Nj . Since the hypothetical flow on arc e follows the
continuous flow dynamics we have kj,v(φ) = kj,u(φ) + τe + qHe (kj,u(φ)). Note that the hypothetical flow rates are
considered on each arc separately. In particular, we cannot expect that they satisfy flow conservation.

In the next lemma, we show that, given some particle φ, whenever the difference between the arrival times at
u (hypothetical flow compared to continuous flow) is not too large for all particles arriving earlier than φ, then
this is also true for the difference in the arrival times of particle φ at node v.

Lemma 3. Consider an arc e = uv, a commodity j ∈ Je and a particle φ ∈ Mj with φ ∈ βN. Suppose there
exists a δ > α with

|`j′,u(ϕ)− kj′,u(ϕ)| ≤ δ
for all commodities j′ ∈ Je, and all particles ϕ ∈ Mj′ with ϕ ∈ βN and `j′,u(ϕ) ≤ `j,u(φ) or kj′,u(ϕ) ≤ kj,u(φ).
Then it holds that

|`j,v(φ)− kj,v(φ)| ≤ 11
κe
νe
· δ.

Proof. The proof is structured as follows. We first bound the difference in the cumulative inflow rates (between
the continuous flow and the hypothetical flow) at node u at the entrance time, afterwards we bound the difference
in the cumulative outflow rates at node v at the queue entrance time. Finally, we can bound the difference in the
arrival time functions at node v.

We start the proof with the following claim. Let θ := `j,u(φ) and ζ := kj,u(φ).

Claim 1. It holds that ∣∣F+
e (θ)−H+

e (ζ)
∣∣ ≤ 3κe · δ.

Proof of Claim 1. The continuous flow and the hypothetical flow are symmetric when considering a single arc
only. For that reason, we focus on the proof of H+

e (θ)− F+
e (ζ) ≤ 3κe · δ.

Firstly, note that F+
e and H+

e are both non-decreasing functions, whose slopes are bounded by κe. For each
commodity j′ ∈ Je it holds that F+

j′,e(`j′,u(ϕ)) = ϕ = H+
j′,e(kj′,u(ϕ)) for all ϕ ∈ Mj′ . We partition Je into two

sets:
J1 := { j′ ∈ Je | H+

j′,e(ζ) = 0 } and J2 := { j′ ∈ Je | H+
j′,e(ζ) > 0 } .

In other words, J2 is the set of commodities for which flow of the first package has already arrived at u at time ζ
and J1 are commodities where no flow has arrived there yet. Note that for all commodities j′ ∈ J1 it holds that
F+
j′,e(θ) ≥ 0 = H+

j′,e(ζ).

For all j′ ∈ J2, we denote by φj′ the last particle of Mj′ with φj′ ∈ βN and kj′,u(φj′) ≤ ζ. Due to the
requirements of the lemma applied to φ and φj′ , the arrival time of this particle φj′ in the continuous flow
satisfies

θ ≥ ζ − δ ≥ kj′,u(φj′)− δ ≥ `j′,u(φj′)− 2δ.

Combining these observations yields

F+
e (θ) =

∑
j′∈J1

F+
j′,e(θ) +

∑
j′∈J2

F+
j′,e(θ)

≥
∑
j′∈J1

H+
j′,e(ζ) +

∑
j′∈J2

F+
j′,e(`j′,u(φj′))− 2δκe

=
∑
j′∈J1

H+
j′,e(ζ) +

∑
j′∈J2

H+
j′,e(kj′,u(φj′))− 2δκe

≥
∑
j′∈J

H+
j′,e(ζ)− 2δκe − ακe ≥

∑
j′∈J

H+
j′,e(ζ)− 3δκe.
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The first inequality holds since the slope of the total inflow F+
e is bounded by κe and for each commodity j′ ∈ J2

the difference `j′,u(φj′) − θ is upper bounded by 2δ. Finally, note that the last inequality holds since kj′,u(φj′)
and ζ correspond to the same time step or no flow of commodity j′ enters e between these points in time.

Equivalently, by replacing ζ by θ, k by ` and F+ and by H+ we obtain

H+
e (ζ) ≥ F+

e (θ)− 3δκe. �

Since the deviation of cumulative inflow is bounded, we can derive a bound on the difference in the cumulative
outflow functions at the time the particle φ enters the respective queues.

Claim 2. We have ∣∣F−e (θ + τe)−H−e (ζ + τe)
∣∣ ≤ 7δκe.

Proof of Claim 2. Assume for contradiction that we have F−e (θ + τe)−H−e (ζ + τe) > 7δκe. Let ζ′ be the latest
point in time before ζ, such that there was no queue at time ζ′ + τe, i.e.,

ζ′ := max { ξ ≤ ζ | H+
e (ξ)−H−e (ξ + τe) = 0 } .

Note that this condition is satisfied for ξ = 0, since H+
e (0) = H−e (τe) = 0. Since either ζ′ = ζ or a queue builds up

immediately after ζ′ (implying H+
e is strictly increasing), there has to be a commodity j′ and a particle φ′ ∈ βN

with kj′,u(φ′) ∈ [ζ′, ζ′ + α]. Note that this immediately implies that

H+
e (kj′,u(φ′))−H+

e (ζ′) ≤ ακe ≤ δκe.

Since there is no queue for ζ′, it holds that H−e (ζ′ + τe) = H+
e (ζ′). Furthermore, within (ζ′ + τe, ζ + τe] there is

a queue present on e, and thus, we have h−e (ξ) = νe within this interval. Hence,

H−e (ζ + τe) = H−e (ζ′ + τe) + νe · (ζ − ζ′).

To proceed, we distinguish two cases.

Case 1: θ ≥ ζ′ + δ.
Since queues can never be negative, (F+

e (ϑ)− F−e (ϑ+ τe) ≥ 0 for all ϑ) and ζ ∈ [θ − δ, θ + δ] we obtain

F+
e (ζ′ + δ) ≥ F−e (ζ′ + δ + τe) ≥ F−e (θ + τe)− νe · (θ − (ζ′ + δ)) ≥ F−e (θ + τe)− νe · (ζ − ζ′).

Note for the second inequality that the slope of F−e is bounded by νe. By the requirement of the lemma, it follows
that `j′,u(φ′) ∈ [ζ′ − δ, ζ′ + 2δ], and since F+

e cannot grow faster than κe we obtain∣∣F+
e (ζ′ + δ)− F+

e (`j′,u(φ′))
∣∣ ≤ 2δκe.

Putting all together, we get

F+
e (`j′,u(φ′)) + 3δκe −H+

e (kj′,u(φ′)) ≥ F+
e (ζ′ + δ)−H+

e (ζ′)

≥ F−e (θ + τe)− νe · (ζ − ζ′)−H−e (ζ′ + τe)

= F−e (θ + τe)− νe · (ζ − ζ′)− (H−e (ζ + τe)− νe · (ζ − ζ′))

= F−e (θ + τe)−H−e (ζ + τe)

> 7δκe.

This is a contradiction to Claim 1 (applied to particle φ′ of commodity j′, which satisfies the requirement of
Lemma 3).

Case 2: θ < ζ′ + δ.
By the requirement of the lemma, we have ζ′ ≤ ζ ≤ θ + δ, which gives us |θ − ζ′| ≤ δ. Using this and the fact
that queues cannot be negative yields

F+
e (ζ′) ≥ F−e (ζ′ + τe) ≥ F−e (θ − δ + τe) ≥ F−e (θ + τe)− νeδ.

By the requirement of the lemma, it follows that `j′,u(φ′) ∈ [ζ′− δ, ζ′+ 2δ], and since F+
e cannot grow faster than

κe, we obtain ∣∣F+
e (ζ′)− F+

e (`j′,u(φ′))
∣∣ ≤ 2δκe.
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Again, putting everything together gives

F+
e (`j′,u(φ′)) + 3δκe −H+

e (kj′,u(φ′)) ≥ F+
e (ζ′)−H+

e (ζ′)

= F+
e (ζ′)−H−e (ζ′ + τe)

≥ F−e (θ + τe)− νeδ −H−e (ζ + τe)

> 7δκe − νeδ
≥ 6δκe.

This again contradicts Claim 1. Hence, in both cases, we obtain

F−e (θ + τe)−H−e (ζ + τe) ≤ 7δκe.

The assumption H−e (kj,u(φ) + τe)−F−e (`j,u(φ) + τe) > 7δκe can lead to a contradiction in the same way by using
the symmetry of flow F and H. �

We can now use Claim 1 and Claim 2 to finish the proof of the lemma. The difference in the arrival times of
particle φ ∈ βN at node v in the continuous flow and hypothetical flow can be bounded as follows:

|`j,v(φ)− kj,v(φ)| =
∣∣∣`j,u(φ) + τe + qj,e(`j,u(φ))− (kj,u(φ) + τe + qHe,j(kj,u(φ)))

∣∣∣
≤ δ +

∣∣∣qj,e(`j,u(φ))− qHe,j(kj,u(φ))
∣∣∣

= δ +

∣∣∣∣ 1

νe
·
(
F+
e (`j,u(φ))− F−e (`j,u(φ) + τe)−H+

e (kj,u(φ)) +H−e (kj,u(φ) + τe)
)∣∣∣∣

≤ δ +
1

νe
(3δκe + 7δκe)

≤ 11δ
κe
νe
.

In the next lemma we bound the difference between the hypothetical arrival time kj,v and the refined packet
arrival time `Dj,v.

Lemma 4. Given an arc e = uv, a point in time θ and a commodity j ∈ Je. For sufficiently small α it holds that∣∣∣kj,v(φ)− `Dj,v(dφ
β
e)
∣∣∣ ≤ C1 ·

√
α+ θ · C2 ·

√
α for φ ∈Mj with kj,u(φ) ≤ θ.

Here, C1 and C2 are positive constants that only depend on the instance properties κe and νe.

Proof. This lemma bounds the error between the arrival times in the packet model and the continuous model
on a single arc. To do so, we introduced the hypothetical flow, which has exactly the same inflow functions
as the packet routing. In the following, we bound the difference between the arrival time of a packet and the
corresponding particle entering arc e at the same time.

As we only consider a single arc, on which we have FIFO in both models, we suppose for the beginning that
all particles and packets belong to a single commodity with particles φ ∈M := [0,m] ⊂ R≥0, with m :=

∑
j∈J mj ,

and packets i ∈ N :=
{

1, 2, . . . ,
∑
j∈J |Nj |

}
, respectively. In other words, we focus on the total flow. We define

the arrival times at u and v by

ku(φ) := min { θ ∈ R≥0 | H+
e (θ) = φ } , kv(φ) := min { θ ∈ R≥0 | H−e (θ) = φ } ,

`Du (i) := min { θ ∈ R≥0 | G+
e (θ) = iβ } , `Dv (i) := min { θ ∈ R≥0 | G−e (θ) = iβ } .

Clearly, as we have H+
e = G+

e , it holds that ku(iβ) = `Du (i) for all i ∈ N .
From now on, we consider a particle-packet-pair φ and i := dφ

β
e. We will show by induction over the particles

that the following holds.

Claim 3. There exists constants C̃1 and C̃2 that only depend on the instance properties such that for all φ ∈M
with i = dφ

β
e ∈ N it holds that∣∣∣kv(φ)− `Dv (i)

∣∣∣ ≤ δ(φ) with δ(φ) ≤ C̃1 ·
√
α+ φ · C̃2 ·

√
α.
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Proof of Claim 3. The proof idea is to do an induction over the particles M ⊆ R≥0. In every induction step we
extend the statement for a flow volume of at least

√
α− β. The major part of the proof deals with the induction

step and the induction start is shown at the very end.
Through the proof, we need some particular particles and packets which we denote as follows. Let φ′ be

the particle that leaves e at the moment when particle φ enters the queue. Formally, φ′ is unique particle with
kv(φ′) = ku(φ) + τe. Note that whenever zHe (ku(φ) + τe) > 0 there has to be a particle leaving the queue of e at

that very moment. Otherwise φ′ = φ. Let i′ be the particle corresponding to φ′, formally i′ := dφ
′

β
e.

Let furthermore j be the last packet that left the queue before packet i lines up in the packet routing, in
other words, j := max { j′ ≤ i | `Dv (j′) ≤ `Du (i) + dτeeα }. This set is not empty as it contains packet 1. We denote
the corresponding particle by ψ := j · β. Overall, we have the following correspondences between packets and
particles:

i↔ φ i′ ↔ φ′ j ↔ ψ.

In order to bound the difference between kv(φ) and `Dv (i), we carefully analyze the arrival times of these particles
and packets.

First of all, we assume that β
α

is small enough such that there is at least one packet allowed to leave e at each
time step, i.e., ν̂e ≥ 1. This way, we ensure that∣∣∣`Du (i) + dτeeα − `Dv (j)

∣∣∣ ≤ α. (7)

Furthermore, since G+
e = H+

e , we have that
∣∣ku(φ)− `Du (i)

∣∣ ≤ α, and hence,∣∣∣kv(φ′)− `Dv (j)
∣∣∣ (7)

≤
∣∣∣ku(φ) + τe − (`Du (i) + dτeeα)

∣∣∣+ α ≤ 3α. (8)

In the following, we distinguish three cases in dependency of the queue lengths at the time particle φ or packet i,
respectively, queues up:

1. The continuous and discrete queue are small: zHe (ku(φ) + τe) ≤
√
α and zDe (`Du (i) + dτeeα) ≤

√
α.

2. The continuous queue is larger than
√
α and larger than the discrete queue: zHe (ku(φ) + τe) >

√
α and

zDe (`Du (i) + dτeeα) ≤ zHe (ku(φ) + τe).

3. The discrete queue is larger than
√
α and larger than the continuous queue: zDe (`Du (i) + dτeeα) >

√
α and

zDe (`Du (i) + dτeeα) > zHe (ku(φ) + τe).

Case 1: zHe (ku(φ) + τe) ≤
√
α and zDe (`Du (i) + dτeeα) ≤

√
α.

Since both queues are upper bounded by
√
α, we obtain

kv(φ) ∈
[
kv(φ′), kv(φ′) +

√
α

νe

]
.

With Lemma 2 and (7), we obtain

`Dv (i) ∈
[
`Dv (j), `Dv (j) +

√
α

νe
+ 3α+

κeα

νe
+
β

νe

]
.

If we put this together with (8), it follows that:∣∣∣kv(φ)− `Dv (i)
∣∣∣ ≤ √α

νe
+ 6α+

κeα

νe
+
β

νe
.

Case 2: zHe (ku(φ) + τe) >
√
α and zDe (`Du (i) + dτeeα) ≤ zHe (ku(φ) + τe).

For the sake of simplicity, we use the intuitive notation and write x± y for the interval [x− y, x+ y]. As a first
step, notice that

kv(φ) = kv(φ′) +
(φ− φ′)
νe

∈ kv(φ′) +
β(i− i′)

νe
± β

νe
and similar with Lemma 2

`Dv (i)
(7)
∈ `Dv (j) + qDe (`Du (i))± α ⊆ `Dv (j) +

β(i− j)
νe

±
(

3α+
κeα

νe
+
β

νe

)
.

This gives us that ∣∣∣kv(φ)− `Dv (i)
∣∣∣ ≤ ∣∣∣∣kv(φ′)− `Dv (j) +

β((i− i′)− (i− j))
νe

∣∣∣∣+ 3α+
κeα

νe
+

2β

νe

=

∣∣∣∣kv(φ′)− `Dv (j) +
β(j − i′)

νe

∣∣∣∣+ 3α+
κeα

νe
+

2β

νe
.

(9)
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Furthermore, in the case of j ≥ i′, we observe that the difference between the arrival times at node v from packet
j and i′ can be bounded from below by the time the packets between them necessarily need to leave the arc e.
Hence, we apply Lemma 2 on a fictional packet routing in which packet i′ leaves the queue exactly at the time
packet j enters the queue (consisting of all particles between i′ and j). As the time between i′ and j arriving at
v in the actual packet routing is at least that large, we obtain

`Dv (j)− `Dv (i′) ≥
∣∣∣∣β(j − i′)

νe

∣∣∣∣− (2α+
κeα

νe
+
β

νe

)
. (10)

In the case that i′ > j, we have i′ ≤ j + 2, as we explain in the following. We have

(i′ − 1)β ≤ φ′ = φ− zHe (ku(φ) + τe) ≤ iβ − zHe (ku(φ) + τe)

and also
zDe (`Du (i) + dτeeα) = G+

e (`Du (i))−G−e (`Du (i) + dτeeα) ≥ iβ − (j + 1)β.

Hence, we obtain with the assumption of Case 2 that

(i′ − j)β ≤ iβ − zHe (ku(φ) + τe) + β − (iβ − zDe (`Du (i) + dτeeα)− β)

= zDe (`Du (i) + dτeeα)− zHe (ku(φ) + τe) + 2β

≤ 2β.

In other words, there is at most one additional packet between i′ and j. Furthermore, it holds that i′ ∈ [j + 1, i],
and thus, i′ is in a queue at time `Du (i) + dτeeα. Assuming that ν̂e ≥ 2 (true for sufficiently small β

α
) yields

`Dv (j) − `Dv (i′) ≥ −α. With
∣∣∣ (j−i′)βνe

∣∣∣ ≤ 2β
νe
≤ ακe

νe
+ β

νe
Equation (10) also holds in this case of i′ > j. Finally,

combining all observations above, we obtain∣∣∣kv(φ)− `Dv (i)
∣∣∣

(9)

≤ max

{
`Dv (j)− kv(φ′) +

2β

νe
, kv(φ′)− `Dv (j) +

∣∣∣∣β(j − i′)
νe

∣∣∣∣ }+ 3α+
κeα

νe
+

2β

νe
(10)

≤ max

{
`Dv (j)− kv(φ′) +

2β

νe
, kv(φ′)− `Dv (i′) + 2α+

ακe
νe

+
β

νe

}
+ 3α+

κeα

νe
+

2β

νe
(8)

≤ max

{
3α, kv(φ′)− `Dv (i′) + 2α+

ακe
νe

}
+ 3α+

κeα

νe
+

4β

νe

≤ δ(φ−
√
α) + 6α+

2κeα

νe
+

4β

νe

Here, the last inequality follows by induction since φ−
√
α ≥ φ′ (case assumption) and by monotonicity of δ.

Case 3: zDe (`Du (i) + dτeeα) >
√
α and zDe (`Du (i) + dτeeα) > zHe (ku(φ) + τe).

We begin with

kv(φ) = kv(φ′) +
(φ− φ′)
νe

.

Lemma 2 and (7) provides

`Dv (i) = `Du (i) + dτeeα + qDe (`Du (i))

∈ `Dv (j) +
zDe (`Du (i) + dτeeα)

νe
±
(

3α+
κeα

νe
+
β

νe

)
⊆ `Dv (j) + β · i− j

νe
±
(

3α+
κeα

νe
+

2β

νe

)
⊆ `Dv (j) +

φ− ψ
νe

±
(

3α+
κeα

νe
+

3β

νe

)
.

This gives us that∣∣∣`Dv (i)− kv(φ)
∣∣∣ ≤ ∣∣∣∣`Dv (j)− kv(φ′) +

(φ− ψ)− (φ− φ′)
νe

∣∣∣∣+

(
3α+

κeα

νe
+

3β

νe

)
(11)

The case assumption states that the discrete queue is longer than the hypothetical queue. Together with φ′ =
φ− zHe (ku(φ) + τe) and ψ = jβ ≤ iβ − zDe (`Du (i) + dτeeα) this implies

φ′ − ψ ≥ zDe (`Du (i) + dτeeα)− zHe (ku(φ) + τe) + φ− iβ > −β. (12)
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Furthermore, since queues in the continuous flow model cannot operate faster than νe, we have for φ′ ≥ ψ that

kv(φ′)− kv(ψ) ≥ φ′ − ψ
νe

(13)

For φ′ < ψ there is a queue for all particles in [φ, φ′] 3 ψ. Thus, (13) holds with equality. Combining these
inequalities, we obtain∣∣∣`Dv (i)− kv(φ)

∣∣∣
(11),(12)

≤ max

{
kv(φ′)− `Dv (j) +

β

νe
, `Dv (j)− kv(φ′) +

(φ′ − ψ)

νe

}
+ 3α+

κeα

νe
+

3β

νe
(13)

≤ max

{
kv(φ′)− `Dv (j) +

β

νe
, `Dv (j)− kv(φ′) + kv(φ′)− kv(ψ)

}
+ 3α+

κeα

νe
+

3β

νe
(8)

≤ max

{
3α+

β

νe
, `Dv (j)− kv(ψ)

}
+ 3α+

κeα

νe
+

3β

νe

≤ δ(φ−
√
α+ β) + 6α+

κeα

νe
+

4β

νe
.

The last inequality holds by monotonicity of δ(·) and since we have ψ = jβ ≤ iβ−
√
α ≤ φ+β−

√
α, which holds

by the case assumption as the discrete queue is longer than
√
α.

Case conclusion. To conclude the case distinction and prove the induction step, we need a monotonically
increasing function δ : M → R>0 that bounds

∣∣`Dv (i)− kv(φ)
∣∣, i.e., satisfies:

• Case 1: δ(φ) ≥ 6α+
√
α
νe

+ κeα
νe

+ β
νe

• Case 2: δ(φ) ≥ δ(φ−
√
α) + 6α+ 2κeα

νe
+ 4β

νe

• Case 3: δ(φ) ≥ δ(φ−
√
α+ β) + 6α+ κeα

νe
+ 4β

νe

• δ(φ)→ 0 for α→ 0 and β
α
→ 0 for all φ ∈M .

The function

δ(φ) = 6α+

√
α

νe
+
κeα

νe
+

2β

νe
+

2φ√
α

(
6α+

2κeα

νe
+

4β

νe

)
≤ C̃1 ·

√
α+ φ · C̃2 ·

√
α,

fulfills all requirements, where C̃1 and C̃2 are constants that only depend on instance properties, namely νe and
κe.

It remains to show the base case, which consists of all particles in φ ∈ [0,
√
α]. In this case, the total flow

volume of packets on the arc, and hence, in the queue, is upper bounded by
√
α + β (note that for φ =

√
α the

packet i might be rounded up to at most
√
α/β+ 1). Applying the argumentation used in Case 1 to the situation

where queues are bounded by
√
α+ β in both models yields∣∣∣`Dv (i)− kv(φ)

∣∣∣ ≤ 6α+

√
α

νe
+
κeα

νe
+

2β

νe
≤ δ(φ).

Our choice of δ satisfies this.
This finishes the proof of the claim. Thus, we have shown that, in a single commodity setting, the difference

in the arrival times at node v between a particle and the corresponding packet is upper bounded by δ which goes
to 0 when the discretization parameters go to 0. �

To prove the lemma two things remain to show. First, we reassign the commodities to the packets, and second,
we switch from a particle-dependent bound to a time-dependent bound.

Given a particle φj ∈ Mj and corresponding packet ij := dφj
β
e ∈ Nj , let ϑ := kj,u(φj) be the point in time

the particle enters e. We consider the same particle in the single commodity flow setting and denote it by φ. In
other words, φ is the particle with ku(φ) = ϑ. The corresponding packet is i := dφ

β
e. Since the flow dynamics and

the inflow rates of the single-commodity hypothetical flow equal the multi-commodity hypothetical flow, we have

kv(φ) = THe (ku(φ)) = THe (ϑ) = THe (kj,u(φj)) = kj,v(φj).

In the following, we argue that the arrival times at node v of packet i and ij are not too far from each other.
First, observe that packet ij and i enter e at the same time step, which is given by dϑeα. Though, the refined
entrance times (which are commodity-dependent) might differ up to α, which might cause a small error for the
exit times. The packet volume which enters between the refined entrance times of these two packets is bounded
by κeα. Since packet i and ij enter the arc at the same time step, they are also assigned to Qe at the same time
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step. This implies that in the time steps between the exit times of the two packets the capacity of the arc is fully
used, i.e., at least bνecβ volume leaves per time step. Hence, the time steps when i and ij leave the arc cannot
be further away than κeα

bνecβ
+ α. Note that the additive α is due to the rounding to time steps. For the refined

times, there might be an additional deviation of α, which gives us∣∣∣`Dj,v(ij)− `Dv (i)
∣∣∣ ≤ κeα

bνecβ
+ 2α.

These considerations together with Claim 3 lead to∣∣∣`Dj,v(ij)− kj,v(φj)
∣∣∣ ≤ ∣∣∣`Dj,v(ij)− `Dv (i)

∣∣∣+
∣∣∣`Dv (i)− kv(φ)

∣∣∣+ |kv(φ)− kj,v(φj)|

≤ κeα

bνecβ
+ 2α+ C̃1 ·

√
α+ φ · C̃2 ·

√
α

≤ C1 ·
√
α+ φ · C̃2 ·

√
α

with C1 := 2κe
νe

+2+C̃1. Note that the last inequality only holds for sufficiently small β, which fulfills bνecβ ≥ νe/2.
In order to switch from particle φ to entrance time ϑ, we use the fact that until time ϑ at most a total flow of
κe · ϑ entered arc e. By choosing C2 := κe · C̃2, we obtain∣∣∣`Dj,v(ij)− kj,v(φj)

∣∣∣ ≤ C1 ·
√
α+ φ · C̃2 ·

√
α

≤ C1 ·
√
α+ ϑ · κe ·

C2

κe
·
√
α

= C1 ·
√
α+ ϑ · C2 ·

√
α.

Since ϑ = kj,u(φj) ≤ θ, this completes the proof of the lemma.

With the help of the previous lemmas, we can finally prove Theorem 1:

Proof of Theorem 1. We prove this theorem by an induction on K. Due to the finitely lasting network inflow
rates, there is a finite time horizon H, for which the last particle has left the network. It is sufficient to prove
the statement only for K ∈ { 1, 2, . . . , Ĥ } with Ĥ := dH/τ∗e, as they cover all arrival times at all nodes for all
particles. For larger values of K the right-hand side of the bound only grows since C > 1, so the statement
remains valid.

We choose α and β to be small enough, such that
√
α < τ∗C−Ĥ and β/α < 1 as well as νe · α/β ≥ 2 for all

e ∈ E. (The last two conditions are needed for Lemma 3.)
For the base case, we consider a point in time θ ∈ [0, τ∗). In this case, we only have to consider the nodes oj

for each commodity j since for all other nodes there is no particle φ ∈ Mj with `j,v(φ) ≤ θ and also no packet i
with `Dj,v(i) ≤ θ. For the release times, we get

`Dj,oj (i) = ri = min

{
θ ∈ Θα

∣∣∣∣ ∫ θ

0

uj(ξ) dξ ≥ iβ
}

= min

{
θ ∈ Θα

∣∣∣∣ ∫ θ

0

uj(ξ) dξ ≥ φ
}
∈ [`j,oj (φ), `j,oj (φ) + α].

For the induction step to K ≤ Ĥ, assume the theorem is proven for K − 1. Consider a packet i ∈ Nj and a
particle φ := iβ ∈ Mj with min{`j,v(φ), `Dj,v(i)} < Kτ∗. If i is released at node v, the statement holds with the
considerations of the base case. Otherwise, for the node u with e = uv ∈ Pj it holds that min{`j,u(φ), `Dj,u(i)} ≤
min{`j,v(φ), `Dj,v(i)} − τe ≤ (K − 1)τ∗, and therefore, we can apply the induction hypothesis to node u to obtain

max{`j,u(φ), `Dj,u(i)} ≤ min{`j,u(φ), `Dj,u(i)}+
τe
2
≤ min{`j,v(φ), `Dj,v(i)} − τe

2
≤ (K − 1)τ∗. (14)

For the first inequality note that we use
√
α < τ∗C−Ĥ < τe/2 ·C−(K−1). By introducing the hypothetical flow on

arc e, we can apply Lemma 3 with δ := CK−1√α. The preconditions of the lemma are satisfied since we can apply
the induction hypothesis to every ϕ ∈ βN (and i′ := ϕ/β) with min {`j′,u(ϕ), `Dj′,u(i′)} ≤ max {`j,u(φ), `Dj,u(i)}
thanks to (14). Note that kj′,u(φ′) = `Dj′,u(i′) for all i′ ∈ Nj′ and φ′ = i′β ∈Mj′ . Lemma 3 gives us

|`j,v(φ)− kj,v(φ)| ≤ 11
κe
νe
CK−1√α.

We have chosen α small enough such that CK−1√α ≤ τ∗. Hence, again by the induction hypothesis, we obtain

`Dj,u(i) ≤ min { `Dj,u(i), `j,u(φ) }+ CK−1√α < (K − 1)τ∗ + τ∗ ≤ Kτ∗.
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Applying Lemma 4 with θ := Kτ∗ yields∣∣∣kj,v(φ)− `Dj,v(i)
∣∣∣ ≤ C1

√
α+Kτ∗C2

√
α.

Finally, by choosing C large enough, we obtain∣∣∣`j,v(φ)− `Dj,v(i)
∣∣∣ ≤ |`j,v(φ)− kj,v(φ)|+

∣∣∣kj,v(φ)− `Dj,v(i)
∣∣∣

≤ 11
κe
νe
CK−1√α+ C1

√
α+Kτ∗C2

√
α

≤ (C −
√
C)CK−1√α+KC

√
α

≤
(
CK − CK−0.5 +KC

)√
α

≤ CK
√
α.

The inequalities hold by choosing C large enough such that the following conditions are satisfied

C −
√
C ≥ 11

κe
νe
, C ≥ C1 + C2τ

∗ and CK−0.5 ≥ KC for K ∈ { 2, 3, . . . , Ĥ } .

Note that the last condition holds for all C ≥ 4.

Since each commodity has a bounded flow mass and the supply rate functions have a bounded support, there
exists a point in time when the last particle enters the network. As the particles travel along predefined paths
there exists a finite time horizon, i.e., a point in time at which all particles have arrived at their destinations and
the network is empty from this point in time onward. By Theorem 1 this implies that there is also a finite time
horizon for all packet routing instances with α ≤ 1 simultaneously. With this observation, Theorem 1 implies
convergence of the arrival times, and even stronger, it is possible to show that the flows converge by proving
uniform convergence of the cumulative flow rates.

Theorem 2. Let (V,E, (νe)e∈E , (τe)e∈E) be a network and J be a finite set of commodities, each j ∈ J equipped
with a simple oj-dj-path Pj and an integrable and bounded supply rate function uj with bounded support. Consider
the packet routings induced by a sequence of discretization parameters (α, β) such that α and β

α
go to zero. Then

the following two statements hold:

(i) For every v ∈ V , j ∈ Jv and φ ∈Mj, the arrival time `Dj,v(dφ
β
e) of the packet model converges to the arrival

time `j,v(φ) of the flow model.

(ii) For all e = uv ∈ E and all j ∈ Je the cumulative flow G+
j,e of the packet model converges uniformly to the

cumulative flow F+
j,e of the flow model. Analogously, G−j,e converges uniformly to F−j,e.

Proof. For (i) first observe that by the continuity of `j,v we have that `j,v(dφeβ) → `j,v(φ) for β → 0. The
statement then follows immediately by Theorem 1 with K large enough such that `j,v(φ) ≤ Kτ∗.

For (ii) let ε > 0. By Theorem 1 it is possible to choose (α, β) small enough such that∣∣∣`Dj,u(i)− `j,u(iβ)
∣∣∣ ≤ ε− β

κe

for every packet i ∈ Nj . This is possible by again choosing K large enough such that at time Kτ∗ all particles
have left the network. Given a point in time θ, we consider the particle φ := F+

j,e(θ) ∈ Mj . We denote the two

packets that are as close as possible to φ by i− := bφ
β
c ∈ Nj and i+ := dφ

β
e ∈ Nj (see below for the case that one

of them does not exist). Note that the arrival time of packet i− cannot be much later than θ, and analogously,
the arrival time of i+ cannot be much earlier than θ. More precisely,

`Dj,u(i−)− ε− β
κe

≤ `j,u(i−β) ≤ θ ≤ `j,u(i+β) ≤ `Dj,u(i+) +
ε− β
κe

.

Since the slope of G+
j,e is bounded by κe and F+

j,e(θ) ≤ i
−β + β, we obtain

G+
j,e(θ) ≥ G

+
j,e(`

D
j,u(i−))− ε− β

κe
· κe = i−β − (ε− β) ≥ F+

j,e(θ)− ε.

Analogously, we get an upper bound on G+
j,e by using F+

j,e(θ) ≥ i
+β − β

G+
j,e(θ) ≤ G

+
j,e(`

D
j,u(i+)) +

ε− β
κe

· κe = i+β + ε− β ≤ F+
j,e(θ) + ε.

For the case that i− = bφ
β
c = 0 6∈ Nj , we use the trivial lower bound of G+

j,e(θ) ≥ 0 and for the case that

i+ = dφ
β
e = |Nj |+ 1 6∈ Nj , we use the upper bound G+

j,e(θ) ≤ |Nj | · β ≤ φ+ β ≤ F+
j,e(θ) + ε. With the exact same

arguments, it holds that
∣∣G−j,e(θ)− F−j,e(θ)∣∣ ≤ ε.
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5.1 Example.

To complement this section, we want to visualize the convergence result in a simple example. For this we consider
the network depicted in Figure 6. The first commodity (green) sends one flow unit within [0, 1] with a rate of
one along the zigzag path. The second commodity (blue) sends flow from time 0 to 1 with a rate of one along
the bottom path. We compare the arrival time of particles and packets for different discretizations in Figure 7.
It becomes apparent that for smaller discretization the arrival times approach the arrival time of the continuous
flow embedding.

In detail, the continuous flow of the green commodity reaches node w half a time unit earlier than the flow
of the blue commodity. Thus, the first half of the green flow (particles [0, 1

2
]) can use the full capacity of arc wd

and the second half splits capacity evenly with the blue commodity. Afterwards, all green flow particles have left
wd and the blue commodity can use the full capacity.

In the first packet routing instance with discretization (1, 1), we only consider the network at discrete time
steps. This means at time 2 both the single blue and the single green packet are located at w and enter arc
wd. Since the arc of the blue packet is preferred in a tie break, the blue packet enters arc wd first, followed by
the green packet (note that both packets enter the arc at the same time step, still the ordering of the packets is
essential). Now, to leave the arc, and to arrive at node d, a capacity of one is needed. For that reason capacity
has to be accumulated at wd for one time step before the blue packet can leave the arc at time 4. Again, capacity
needs to be accumulated for one time step until the green packet leaves the arc at time 6.

Already in the packet routing instance with discretization ( 1
2
, 1

4
), the packet arrival times become much more

similar to the arrival times of the continuous model. First of all, since time steps have a length of 1
2
, the difference

in the travel times from o to w along the two paths becomes noticeable and the first two green packets enter arc
wd before the first blue packet arrives at w. Second, a capacity of 1

2
allows exactly one packet of size 1

4
to leave

every time step of length 1
2
, which makes the outflow of arc wd smoother.

In the packet routing instance with discretization ( 1
4
, 1

16
), we have a very similar situation as in the continuous

flow. The first half of the green packets can use arc wd first. Afterwards capacity is split evenly until the last

(1, 1)

(2, 1) (1, 1
2
)

( 1
2
, 1) d

w

v

o

(τ, ν)

u1(θ) = 1 for θ ∈ [0, 1]

u2(θ) = 1 for θ ∈ [0, 1]

Figure 6: Network, where the arc properties are given in the form (τ, ν). At w, arc ow is preferred over
arc vw in a tie break. We consider two commodities, one sending flow along the zigzag path (o, v, w, d),
one along the bottom path (o, w, d). Both commodities send flow with a rate of one in [0, 1].
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Figure 7: The arrival times at the destination d of the particles/packets of the different commodities
(green for the first commodity along the zigzag path, blue for the second on the bottom path). The solid
lines represent the arrival time functions of the continuous model. On the left, the packet size and the
time step size are equal to one. In the middle the discretization is given by α = 1

2 , β = 1
4 and on the

right by α = 1
4 , β = 1

16 . The horizontal axis shows the indices of the packets. Overall the packets always
sum up to a flow volume of 1. The vertical axis corresponds to the arrival times.
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green packet has arrived at d and the blue packets can use the full capacity for themselves.

6 Existence of approximate pure Nash equilibria.

As an application of the convergence result, we show the existence of approximate pure Nash equilibria in our
competitive packet routing model by using the existence of exact dynamic equilibria for flows over time. This is
particularly interesting for the multi-commodity setting, where exact pure Nash equilibria do not exist in general
as it was shown in Proposition 1.

Theorem 3. Consider a network (V,E, (νe)e∈E , (τe)e∈E), a constant T > 0, and a set of commodities J , each j ∈
J equipped with an origin-destination-pair (oj , dj) and an integrable and bounded supply rate function uj : [0, T ]→
R≥0. For every ε > 0, there are discretization parameters (α, β), such that the corresponding competitive packet
routing game possesses an ε-equilibrium.

Proof. Fix ε > 0. We consider a multi-commodity Nash flow over time f , which exists due to Cominetti et al. [5,
Theorem 8]. It can be decomposed into a path-based flow over time (fP )P∈P , where

P := {P is an oj-dj-path of some commodity j }

(cf. [5, Section 2.7]). Additionally, Cominetti et al. have shown in [5, Lemma 7] that the path arrival times
(`P,dP )P∈P depend continuously on the path inflow rates (fP )P∈P . Hence, we can choose δ > 0 small enough
such that for all path inflow rates (f̃P )P∈P , which differ by at most δ from (fP )P∈P (i.e.,

∑
P∈P‖fP − f̃P ‖L2 ≤ δ)

the corresponding arrival times (˜̀
P,dP )P∈P satisfy∣∣∣`P,dP (φ)− ˜̀
P,dP (φ)

∣∣∣ ≤ ε

4
for all particles φ and all paths P ∈ P. (15)

By considering each path P in P as a separate commodity, we obtain path-based supply rates (uP )P∈P :=
(fP )P∈P . Combining Theorem 1 with a suitable time horizon H provides a pair of discretization parameters
(α, β) such that for every packet i ∈ NP in the corresponding packet routing it holds that∣∣∣`P,dP (iβ)− `DP,dP (i)

∣∣∣ ≤ ε

4
for all P ∈ P.

Additionally, we require β to be small enough such that (15) holds for all f̃ that can be created by shifting a flow
volume of at most β within f .

In the following, we show that the obtained packet routing constitutes an ε-equilibrium. Assume for contra-
diction that there is a packet i that would arrive at least ε earlier by switching from its path P to some other
oP -dP -path P ′. By considering the modified supply rates ũ that result from shifting the β flow volume corre-
sponding to packet i from P to P ′, we obtain a modified flow over time f̃ and a modified packet routing with
arrival times ˜̀ and ˜̀D. Again with Theorem 1, we obtain that∣∣∣˜̀P ′,dP (iβ)− ˜̀D

P ′,dP (i)
∣∣∣ ≤ ε

4
.

Note that the constant C in Theorem 1 only depends on the instance. By choosing C large enough, it is possible
to shift the flow volume without loosing the bound on the arrival times.

Combining all this, we obtain

`P,dP (iβ)− `P ′,dP ′ (iβ)
(15)

≥ `P,dP (iβ)− ˜̀
P ′,dP ′

(iβ)− ε

4

≥ `DP,dP (i)− ˜̀D
P ′,dP ′

(i)− 3ε

4

≥ ε− 3ε

4
> 0.

But this is a contradiction to the fact that f is a Nash flow over time since all particles of the flow volume
corresponding to packet i use path P even though path P ′ is strictly faster.
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7 Open problems.

This work is the first that proves a connection between continuous dynamic models and discrete packet routing
models. There are several possible directions to proceed with this research.

Our bound on the discretization error increases exponentially in time. Experiments [32] indicate that there
might be a time-independent bound though. Can a better upper and maybe also a lower bound on the worst-case
error be shown mathematically? Furthermore, what is the best convergence rate (in α) for a fixed particle? We
prove a convergence rate of

√
α, which is probably not the best possible. However, even rounding the transit time

of a single arc causes a deviation of up to α/2 showing that a convergence rate cannot be faster than linear in α.
Our convergence result in Theorem 2 focuses on the embedding for fixed path choices of the packets/particles.

An interesting but probably challenging follow-up question is the convergence of equilibria in the packet routing
model to Nash flows over time (the equilibria in the continuous flow model). More precisely, given a sequence
of exact packet routing equilibria, whose discretization parameters converge to zero, does the limit exist? If yes,
does it constitute a Nash flow over time? As equilibria do not exist in general for competitive packet routing
games with multiple origin-destination pairs, it seems reasonable to focus on the single origin-destination case
for these kinds of questions. As a first step, a deeper understanding of Nash flows over time is necessary. One
essential aspect is the robustness. If slight distortions of the flow over time or small perturbations of the network
led to drastically different dynamic equilibria, there would be no hope for such a convergence result as packets
(no matter how small they are) would always cause some inaccuracy. Fortunately, this essential condition has
been studied by Olver et al. [20] recently. The authors show continuity of Nash flows over time with respect
to several parameters, such as transit times, capacities, and initial starting conditions. Still, given continuity,
convergence does not follow easily. It would be necessary to overcome the challenge that packets cannot split into
smaller pieces and traverse multiple paths at once, which is one key aspect of Nash flows over time. Also, the
robustness results in [20] are not sufficient as they focus on distortion at a single point in time. However, a packet
flow deviates from a Nash flow over time at almost all points in time. Further investigation in this regard would
certainly be interesting.

In the transport simulation MATSim, traffic assignments are computed by an iterative best response procedure.
Naturally, this raises the question whether best response dynamics converge to approximate equilibria in the
competitive packet routing model. If this could be proven mathematically, it would further extend the theoretical
foundation of MATSim.
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[7] R. Cominetti, M. Scarsini, M. Schröder, and N. Stier-Moses. Approximation and convergence of large atomic
congestion games. Mathematics of Operations Research, 2022.

[8] J. Correa, A. Cristi, and T. Oosterwijk. On the price of anarchy for flows over time. M, pages 1–18, 2021.

24
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